

iOS Apprentice
Matthijs Hollemans

Copyright ©2016 Razeware LLC.

Notice of Rights
All rights reserved. No part of this book or corresponding materials (such as text,
images, or source code) may be reproduced or distributed by any means without
prior written permission of the copyright owner.

Notice of Liability
This book and all corresponding materials (such as source code) are provided on an
“as is” basis, without warranty of any kind, express of implied, including but not
limited to the warranties of merchantability, fitness for a particular purpose, and
noninfringement. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use of other dealing in
the software.

Trademarks
All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

License
By purchasing iOS Apprentice, you have the following license:

• You are allowed to use and/or modify the source code in iOS Apprentice in as
many apps as you want, with no attribution required.

• You are allowed to use and/or modify all art, images and designs that are
included in iOS Apprentice in as many apps as you want, but must include this
attribution line somewhere inside your app: “Artwork/images/designs: from iOS
Apprentice book, available at www.raywenderlich.com”.

• The source code included in iOS Apprentice is for your personal use only. You are
NOT allowed to distribute or sell the source code in iOS Apprentice without prior
authorization.

• This book is for your personal use only. You are NOT allowed to sell this book
without prior authorization, or distribute it to friends, coworkers or students;
they would need to purchase their own copies.

iOS Apprentice

raywenderlich.com 2

About the author
Matthijs Hollemans is a mystic who lives at the top of a mountain
where he spends all of his days and nights coding up awesome
apps. Actually he lives below sea level in the Netherlands and is
pretty down-to-earth but he does spend too much time in Xcode.
Check out his website at www.matthijshollemans.com.

About the cover
Striped dolphins live to about 55-60 years of age, can travel in pods numbering in
the thousands and can dive to depths of 700 m to feed on fish, cephalopods and
crustaceans. Baby dolphins don't sleep for a full a month after they’re born. That
puts two or three sleepless nights spent debugging code into perspective, doesn't
it? :]

iOS Apprentice

raywenderlich.com 3

Table of Contents: Extended
Tutorial 1: Getting Started 6...

The language of the computer 13..
The Bull’s Eye game 16...
The one-button app 18...
How does an app work? 36..
Working our way down the to-do list 38..
Objects, data and methods 42...
Adding the rest of the controls 45..
Enough playing around… let’s make a game! 56...
Calculating the score 72...
Polishing the game 85...
Adding the About screen 95..
Making it look good 104...
Running the game on your device 144..
The end… or the beginning? 150..

iOS Apprentice

raywenderlich.com 5

1Tutorial 1: Getting Started
By Matthijs Hollemans

Hi! I am Matthijs Hollemans, a full-time iOS developer and tutorial team member at
www.raywenderlich.com.

You’re about to read the first tutorial from my book The iOS Apprentice: Beginning
iOS Development with Swift, Fifth Edition.

In this book you will learn how to make your own iPhone and iPad apps with Apple’s
Swift 3.0 programming language, through a series of four epic-length hands-on
tutorials.

The apps you’ll be making in The iOS Apprentice

Everybody likes games, so you’ll start with building a simple but fun iPhone game
named Bull’s Eye. It will teach you the basics of iPhone programming, and the other
tutorials will build on what you learn there.

raywenderlich.com 6

The best part is you can read it here in its entirety for free!

Each tutorial in this book describes a new app in full detail, and together they cover
everything you need to know to make your own apps. By the end of the series
you’ll be experienced enough to turn your ideas into real apps that you can put on
the App Store!

Even if you’ve never programmed before or if you’re new to iOS, you should be able
to follow along with the step-by-step instructions and understand how these apps
are made. Each tutorial has a ton of illustrations to prevent you from getting lost.
Not everything might make sense right away, but hang in there and all will become
clear in time.

Writing your own iPhone and iPad apps is a lot of fun, but it’s also hard work. If you
have the imagination and perseverance there is no limit to what you can make
these cool devices do. It is my sincere belief that this series can turn you from a
complete newbie into an accomplished iOS developer, but you do have to put in the
time and effort. By writing these tutorials I’ve done my part, now it’s up to you…

Enjoy the first tutorial! If it works out for you, then I hope you’ll get the rest of the
book from www.raywenderlich.com/store/ios-apprentice or Amazon.com.

About this book
The iOS Apprentice will help you become an excellent iOS developer, but only if you
let it. Here are some tips that will help you get the most out of this book.

Learn through repetition
You’re going to make a lot of apps in this book. Even though the apps will start out
quite simple, you may find the tutorials hard to follow at first – especially if you’ve
never done any computer programming before – because I will be introducing a lot
of new concepts.

It’s OK if you don’t understand everything right away, as long as you get the
general idea. In the subsequent tutorials from this series you’ll go over many of
these concepts again until they solidify in your mind.

Follow the instructions yourself
It is important that you not just read the instructions but also actually follow
them. Open Xcode, type in the source code fragments, and run the app in the
Simulator. This helps you to see how the app gets built step by step.

Even better, play around with the code. Feel free to modify any part of the app and
see what the results are. Experiment and learn! Don’t worry about breaking stuff –
that’s half the fun. You can always find your way back to the beginning.

Don’t panic – bugs happen!

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 7

You will run into problems, guaranteed. Your programs will have strange bugs that
will leave you stumped. Trust me, I’ve been programming for 30 years and that still
happens to me too. We’re only humans and our brains have a limited capacity to
deal with complex programming problems. In this course, I will give you tools for
your mental toolbox that will allow you to find your way out of any hole you have
dug for yourself.

Understanding beats copy-pasting
Too many people attempt to write iPhone apps by blindly copy-pasting code that
they find on blogs and other websites, without really knowing what that code does
or how it should fit into their program.

There is nothing wrong with looking on the web for solutions – I do it all the time –
but I want to give you the instruments and knowledge to understand what you’re
doing and why. That way you’ll learn quicker and write better programs.

This is hands-on practical advice, not just a bunch of dry theory (although we can’t
avoid some theory). You are going to build real apps right from the start and I’ll
explain how everything works along the way, with lots of pictures that illustrate
what is going on.

I will do my best to make it clear how everything fits together, why we do things a
certain way, and what the alternatives are.

Do the exercises
I will also ask you to do some thinking of your own – yes, there are exercises! It’s
in your best interest to actually do these exercises. There is a big difference
between knowing the path and walking the path… And the only way to learn
programming is to do it.

I encourage you to not just do the exercises but also to play with the code you’ll be
writing. Experiment, make changes, try to add new features. Software is a complex
piece of machinery and to find out how it works you sometimes have to put some
spokes in the wheels and take the whole thing apart. That’s how you learn!

Have fun!
Last but not least, remember to have fun! Step by step you will build up your
understanding of programming while making fun apps. By the end of the series
you’ll have learned the essentials of Swift and the iOS development kit. More
importantly, you should have a pretty good idea of how everything goes together
and how to think like a programmer.

It is my aim that after these tutorials you will have learned enough to stand on your
own two feet as a developer. I am confident that eventually you’ll be able to write
any iOS app you want as long as you get those basics down. You still may have a
lot to learn, but when you’re through with The iOS Apprentice, you can do without
the training wheels.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 8

Who this book is for
This book is great whether you are completely new to programming, or whether
you come from a different programming background and are looking to learn iOS
development.

If you’re a complete beginner, don’t worry – this book doesn’t assume you know
anything about programming or making apps. Of course, if you do have
programming experience, that helps. Swift is a new programming language but in
many ways it’s similar to other popular languages such as PHP, C#, or JavaScript.

If you’ve tried iOS development before with the old language, Objective-C, then its
low-level nature and strange syntax may have put you off. Well, there’s good news:
now that we have a modern language in Swift, iOS development has become a lot
easier to pick up.

It is not my aim with this series to teach you all the ins and outs of iPhone and iPad
development. The iOS SDK (Software Development Kit) is huge and there is no way
we can cover everything – but fortunately we don’t need to. You just need to
master the essential building blocks of Swift and the iOS SDK. Once you understand
these fundamentals, you can easily find out by yourself how the other parts of the
SDK work and learn the rest on your own terms.

The most important thing I’ll be teaching you, is how to think like a programmer.
That will help you approach any programming task, whether it’s a game, a utility, a
mobile app that uses web service, or anything else you can imagine.

As a programmer you’ll often have to think your way through difficult computational
problems and find creative solutions. By methodically analyzing these problems you
will be able to solve them, no matter how complex. Once you possess this valuable
skill, you can program anything!

iOS 10 and better only
The tutorials in this series are aimed exclusively at iOS version 10 and later. Each
new release of iOS is such a big departure from the previous one that it just doesn’t
make sense anymore to keep developing for older devices and iOS versions. Things
move fast in the world of mobile computing!

The majority of iPhone, iPod touch, and iPad users are pretty quick to upgrade to
the latest version of iOS anyway, so you don’t need to be too worried that you’re
leaving potential users behind.

Owners of older devices, such as the iPhone 4S or the first iPads, may be stuck with
iOS version 9 or earlier but this is only a tiny portion of the market. The cost of
supporting these older iOS versions with your apps is usually greater than the
handful of extra customers it brings you.

It’s ultimately up to you to decide whether it’s worth making your app available to

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 9

users with older devices, but my recommendation is that you focus your efforts
where they matter most. Apple as a company always relentlessly looks towards the
future – if you want to play in Apple’s backyard, it’s wise to follow their lead. So
back to the future it is!

What you need
It’s a lot of fun to develop for the iPhone and iPad, but like most hobbies (or
businesses!) it will cost some money. Of course, once you get good at it and build
an awesome app, you’ll have the potential to make that money back many times.

You will have to invest in the following:

iPhone, iPad, or iPod touch. I’m assuming that you have at least one of these.
iOS 10 runs on the following devices: iPhone 5 or newer, iPad 4th generation or
newer, iPad mini 2 or newer, 6th generation iPod touch. If you have an older device,
then this is a good time to think about getting an upgrade. But don’t worry if you
don’t have a suitable device: you can do everything in the Simulator.

Note: Even though I mostly talk about the iPhone in this tutorial series,
everything I say applies equally to the iPad and iPod touch. Aside from small
hardware differences, they all use iOS and you program them in exactly the
same way. You should also be able to run the apps from these tutorials on
your iPad or iPod touch without problems.

Mac computer with an Intel processor. Any Mac that you’ve bought in the last
few years will do, even a Mac mini or MacBook Air. It needs to have at least OS X
10.11 El Capitan or macOS 10.12 Sierra. Xcode, the development environment for
iOS apps, is a memory-hungry tool so having 4 GB of RAM in your Mac is no luxury.
You might be able to get by with less, but do yourself a favor and upgrade your
Mac. The more RAM, the better. A smart developer invests in good tools!

With some workarounds it is possible to develop iOS apps on Windows or a Linux
machine, or a regular PC that has macOS installed (a so-called “Hackintosh”), but
you’ll save yourself a lot of hassle by just getting a Mac.

If you can’t afford to buy the latest model, then consider getting a second-hand
Mac from eBay. Just make sure it meets the minimum requirements (Intel CPU,
preferably more than 1 GB RAM). Should you happen to buy a machine that has an
older version of OS X (10.10 Yosemite or earlier), you can upgrade to the latest
version of macOS from the online Mac App Store for free.

Apple Developer Program account. You can download all the development tools
for free and you can try out your apps on your own iPhone, iPad, or iPod touch
while you’re developing, so you don’t have to join the Apple Developer Program just
yet. But to submit finished apps to the App Store you will have to enroll in the paid
developer program. This will cost you $99 per year.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 10

See developer.apple.com/programs/ for more info.

Xcode
The first order of business is to download and install Xcode and the iOS SDK
(Software Development Kit).

Xcode is the development tool for iOS apps. It has a text editor where you’ll type in
your source code and it has a visual editor for designing your app’s user interface.

Xcode transforms the source code that you write into an executable app and
launches it in the Simulator or on your iPhone. Because no app is bug-free, Xcode
also has a debugger that helps you find defects in your code (unfortunately, it won’t
automatically fix them for you, that’s still something you have to do yourself).

You can download Xcode for free from the Mac App Store (itunes.apple.com/app/
xcode/id497799835). This requires at least OS X El Capitan (10.11), so if you’re
still running OS X Yosemite or even Mavericks you’ll first have to upgrade to the
latest version of macOS (also available for free from the Mac App Store). Get ready
for a big download, as the full Xcode package is about 5 GB.

Important: You may already have a version of Xcode on your system that came
pre-installed with OS X. That version is hopelessly outdated so don’t use it. Apple
puts out new releases on a regular basis and you are encouraged to always develop
with the latest Xcode and the latest available SDK on the latest version of OS X.

I wrote the latest revision of this book with Xcode version 8.0 and the iOS 10.0
SDK on macOS Sierra (10.12). By the time you’re reading this the version numbers
have no doubt gone up again. I will do my best to keep the PDF versions of the
tutorials up-to-date with new releases of the development tools and iOS versions
but don’t panic if the screenshots don’t correspond 100% to what you see on your
screen. In most cases the differences will be minor.

Many older books and blog posts (anything before 2010) talk about Xcode 3, which
is radically different from Xcode 8. More recent material may mention Xcode
versions 4, 5, 6, or 7, which at first glance are similar to Xcode 8 but differ in many
of the details. So if you’re reading an article and you see a picture of Xcode that
looks different from yours, they’re talking about an older version. You may still be
able to get something out of those articles, as the programming examples are still
valid. It’s just the tool that is slightly different.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 11

What’s ahead: an overview
The iOS Apprentice is split into 4 tutorials, moving from beginning to intermediate
topics. In each tutorial you will build a complete app, from scratch! Let’s take a look
at what’s ahead.

Tutorial 1: Getting Started
In the first tutorial you’ll start off by building a game called Bull’s Eye. You’ll learn
how to use Xcode, Interface Builder, and Swift in an easygoing manner.

Tutorial 2: Checklists
In the second tutorial in the series, you’ll create your own to-do list app. You’ll learn
about the fundamental design patterns that all iOS apps use, and about table
views, navigation controllers, and delegates. Now you’re making apps for real!

Tutorial 3: MyLocations
In the third tutorial in the series, you’ll develop a location-aware app that lets you
keep a list of spots that you find interesting. In the process, you’ll learn about Core
Location, Core Data, Map Kit, and much more!

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 12

Tutorial 4: StoreSearch
Mobile apps often need to talk to web services and that’s what you’ll do in this final
tutorial of the series. You’ll make a stylish app that lets you search for products on
the iTunes store using HTTP requests and JSON.

Let’s get started and turn you into a real iOS developer!

The language of the computer
The iPhone may pretend that it’s a phone but it’s really a pretty advanced computer
that also happens to make phone calls.

Like any computer, the iPhone works with ones and zeros. When you write software
to run on the iPhone, you somehow have to translate the ideas in your head into
those ones and zeros that the computer can understand.

Fortunately, you don’t have to write any ones and zeros yourself. That would be a
bit too much to ask of the human brain. On the other hand, everyday English is not
precise enough to use for programming computers.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 13

You will use an intermediary language, Swift, that is a little bit like English so it’s
reasonably straightforward for us humans to understand, while at the same time it
can be easily translated into something the computer can understand as well.

This is the language that the computer speaks:

Actually, what the computer sees is this:

The movl and calll instructions are just there to make things more readable for
humans. Well, I don’t know about you, but for me it’s still hard to make much sense
out of it.

It certainly is possible to write programs in that arcane language – that is what
people used to do in the old days when computers cost a few million bucks apiece
and took up a whole room – but I’d rather write programs that look like this:

func handleMusicEvent(command: Int, noteNumber: Int, velocity: Int) {

 if command == NoteOn && velocity != 0 {
 playNote(noteNumber + transpose, velocityCurve[velocity] / 127)

 } else if command == NoteOff ||
 (command == NoteOn && velocity == 0) {
 stopNote(noteNumber + transpose, velocityCurve[velocity] / 127)

 } else if command == ControlChange {
 if noteNumber == 64 {
 damperPedal(velocity)
 }
 }
}

The above snippet is from a sound synthesizer program. It looks like something
that almost makes sense. Even if you’ve never programmed before, you can sort of

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 14

figure out what’s going on. It’s almost English.

Swift is a hot new language that combines traditional object-oriented programming
with aspects of functional programming. Fortunately, Swift has many things in
common with other popular programming languages, so if you’re already familiar
with C#, Python, Ruby, or JavaScript you’ll feel right at home with Swift.

Swift is not the only option for making apps. Until recently, iPhone and iPad apps
were programmed in Objective-C, which is an object-oriented extension of the
tried-and-true C language. Because of its heritage, Objective-C has some rough
edges and is not really up to the demands of modern developers. That’s why Apple
created a new language.

Objective-C will still be around for a while but it’s obvious that the future of iOS
development is Swift. All the cool kids are using it already.

C++ is another language that adds object-oriented programming to C. It is very
powerful but as a beginning programmer you probably want to stay away from it. I
only mention it because C++ can also be used to write iOS apps, and there is an
unholy marriage of C++ and Objective-C named Objective-C++ that you may come
across from time to time.

I could have started The iOS Apprentice with an in-depth treatise on the features of
Swift but you’d probably fall asleep halfway. So instead I will explain the language
as we go along, very briefly at first but more in-depth later.

In the beginning, the general concepts – what is a variable, what is an object, how
do you call a method, and so on – are more important than the details. Slowly but
surely, all the secrets of the Swift language will be revealed to you.

Are you ready to begin writing your first iOS app?

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 15

The Bull’s Eye game
In this first lesson you’re going to create a game called Bull’s Eye. This is what the
game will look like when you’re finished:

The finished Bull’s Eye game

The objective of the game is to put the bull’s eye, which is on a slider that goes
from 1 to 100, as close to a randomly chosen target value as you can. In the
screenshot above, the aim is to put the bull’s eye at 22. Because you can’t see the
current value of the slider, you’ll have to “eyeball” it.

When you’re confident of your estimate you press the “Hit Me!” button and a popup,
also known as an alert, will tell you what your score is:

An alert popup shows the score

The closer to the target value you are, the more points you score. After you dismiss
the alert popup by pressing the OK button, a new round begins with a new random
target. The game repeats until the player presses the “Start Over” button (the curly
arrow in the bottom-left corner), which resets the score to 0.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 16

This game probably won’t make you an instant millionaire on the App Store, but
even future millionaires have to start somewhere!

Making a programming to-do list
Exercise: Now that you’ve seen what the game will look like and what the
gameplay rules are, make a list of all the things that you think you’ll need to do in
order to build this game. It’s OK if you draw a blank, but give it a shot anyway.

I’ll give you an example:

The app needs to put the “Hit Me!” button on the screen and show an alert popup
when the user presses it.

Try to think of other things the app needs to do – no matter if you don’t actually
know how to accomplish these tasks. The first step is to figure out what you need
to do; how to do these things is not important yet.

Once you know what you want, you can also figure out how to do it, even if you
have to ask someone or look it up. But the “what” comes first. (You’d be surprised
at how many people start writing code without a clear idea of what they’re actually
trying to achieve. No wonder they get stuck!)

Whenever I start working on a new app, I first make a list of all the different pieces
of functionality I think the app will need. This becomes my programming to-do list.
Having a list that breaks up a design into several smaller steps is a great way to
deal with the complexity of a project.

You may have a cool idea for an app but when you sit down to write the program
the whole thing can seem overwhelming. There is so much to do… and where to
begin? By cutting up the workload into small steps you make the project less
daunting – you can always find a step that is simple and small enough to make a
good starting point and take it from there.

It’s no big deal if this exercise is giving you difficulty. You’re new to all of this! As
your understanding grows of how software works, it will become easier to identify
the different parts that make up a design, and to split it into manageable pieces.

This is what I came up with. I simply took the gameplay description and cut it into
very small chunks:

• Put a button on the screen and label it “Hit Me!”

• When the player presses the Hit Me button the app has to show an alert popup to
inform the player how well she did. Somehow you have to calculate the score and
put that into this alert.

• Put text on the screen, such as the “Score:” and “Round:” labels. Some of this
text changes over time, for example the score, which increases when the player
scores points.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 17

• Put a slider on the screen and make it go between the values 1 and 100.

• Read the value of the slider after the user presses the Hit Me button.

• Generate a random number at the start of each round and display it on the
screen. This is the target value.

• Compare the value of the slider to that random number and calculate a score
based on how far off the player is. You show this score in the alert popup.

• Put the Start Over button on the screen. Make it reset the score and put the
player back into the first round.

• Put the app in landscape orientation.

• Make it look pretty. :-)

I might have missed a thing or two, but this looks like a decent list to start with.
Even for a game as basic as this, there are already quite a few things you need to
do. Making apps is fun but it’s definitely a lot of work too!

The one-button app
Let’s start at the top of the list and make an extremely simple first version of the
game that just displays a single button. When you press the button, the app pops
up an alert message. That’s all you are going to do for now. Once you have this
working, you can build the rest of the game on this foundation.

The app will look like this:

The app contains a single button (left) that shows an alert when pressed (right)

Time to start coding! I’m assuming you have downloaded and installed the latest

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 18

version of the SDK and the development tools at this point.

In this tutorial, you’ll be working with Xcode 8.0 or better. Newer versions of Xcode
may also work but anything older than version 8.0 is a no-go.

Because Swift is a very new language, it tends to change between versions of
Xcode. If your Xcode is too old – or too new! – then not all of the code in this book
may work properly. (For this same reason you’re advised not to use beta versions
of Xcode, only the official one from the Mac App Store.)

➤ Launch Xcode. If you have trouble locating the Xcode application, you can find it
in the folder /Applications/Xcode or in your Launchpad. Because I use Xcode all
the time, I placed its icon in my dock for easy access.

Xcode shows the “Welcome to Xcode” window when it starts:

Xcode bids you welcome

➤ Choose Create a new Xcode project. The main Xcode window appears with an
assistant that lets you choose a template:

Choosing the template for the new project

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 19

There are templates for a variety of application styles. Xcode will make a pre-
configured project for you based on the template you choose. The new project will
already include many of the source files you need. These templates are handy
because they can save you a lot of typing. They are ready-made starting points.

➤ Select Single View Application and press Next.

This opens a screen where you can enter options for the new app:

Configuring the new project

➤ Fill out these options as follows:

• Product Name: BullsEye. If you want to use proper English, you can name the
project Bull’s Eye instead of BullsEye, but it’s best to avoid spaces and other
special characters in project names.

• Team: If you already are a member of the Apple Developer Program, this will
show your team name. For now, it’s best to leave this setting alone; we’ll get
back to this later in the tutorial.

• Organization Name: Fill in your own name here or the name of your company.

• Organization Identifier: Mine says “com.razeware”. That is the identifier I use for
my apps. As is customary, it is my domain name written the other way around.
You should use your own identifier here. Pick something that is unique to you,
either the domain name of your website (but backwards) or simply your own
name. You can always change this later.

• Language: Swift

• Devices: iPhone

Make sure the three options at the bottom – Use Core Data, Include Unit Tests, and
Include UI Tests – are not selected. You won’t be using those in this project.

➤ Press Next. Now Xcode will ask where to save your project:

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 20

Choosing where to save the project

➤ Choose a location for the project files, for example the Desktop or your
Documents folder.

Xcode will automatically make a new folder for the project using the Product Name
that you entered in the previous step (in your case BullsEye), so you don’t need to
make a new folder yourself.

At the bottom there is a checkbox that says, “Create Git repository on My Mac”. You
can ignore this for now. You’ll learn about the Git version control system in one of
the next tutorials.

➤ Press Create to finish.

Xcode will now create a new project named BullsEye, based on the Single View
Application template, in the folder you specified.

When it is done, the screen looks like this:

The main Xcode window at the start of your project

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 21

There may be small differences with what you’re seeing on your own computer if
you’re using a version of Xcode newer than 8.0. Rest assured, any differences will
only be superficial.

Note: If you don’t see a file named ViewController.swift in the list on the left
but instead have ViewController.h and ViewController.m, then you picked the
wrong language when you made the project (Objective-C). Start over and be
sure to choose Swift as the programming language.

➤ Press the Run button in the top-left corner:

Press Run to launch the app

Note: If this is the first time you’re using Xcode, it may ask you to enable
developer mode. Click Enable and enter your password to allow Xcode to
make these changes.

Xcode will labor for a bit and then it launches your brand new app in the iOS
Simulator. The app may not look like much yet – and there is not anything you can
do with it either – but this is an important first milestone in your journey.

What an app based on the Single View Application template looks like

If Xcode says “Build Failed” or “Xcode cannot run using the selected device” when

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 22

you press the Run button, then make sure the picker at the top of the window says
BullsEye > iPhone SE (or any other model number) and not Generic iOS
Device:

Making Xcode run the app on the Simulator

If your iPhone is currently connected to your Mac with the USB cable, Xcode may
have attempted to run the app on your iPhone and that may not work without some
additional setting up. At the end of this tutorial I’ll show you how to get the app to
run on your iPhone so you can show it off to your friends, but for now just stick
with the Simulator.

➤ Next to the Run button is the Stop button (the square thingy). Press that to exit
the app.

On your phone you’d use the home button to exit an app (on the Simulator choose
the Hardware → Home item from the menu bar), but that won’t actually
terminate the app. It will disappear from the Simulator’s screen but the app stays
suspended in the Simulator’s memory, just as it would on a real iPhone.

Until you press Stop, Xcode’s activity viewer at the top says “Running BullsEye on
iPhone SE”:

The Xcode activity viewer

It’s not really necessary to stop the app, as you can go back to Xcode and make
changes to the source code while the app is still running. However, these changes
will not become active until you press Run again. That will terminate any running
version of the app, build a new version, and launch it in the Simulator.

What happens when you press Run?

Xcode will first compile your source code – that is: translate it – from Swift
into a machine code that the iPhone (or the Simulator) can understand. Even
though the programming language for writing iPhone apps is Swift or
Objective-C, the iPhone itself doesn’t speak those languages. A translation
step is necessary.

The compiler is the part of Xcode that converts your Swift source code into
executable binary code. It also gathers all the different components that make
up the app – source files, images, storyboard files, and so on – and puts them
into the so-called “application bundle”.

This entire process is also known as building the app. If there are any errors

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 23

(such as spelling mistakes), the build will fail. If everything goes according to
plan, Xcode copies the application bundle to the Simulator or the iPhone and
launches the app. All that from a single press of the Run button.

Adding the button
I’m sure you’re as little impressed as I am with an app that just displays a dull
white screen, so let’s add a button to it.

The left-hand side of the Xcode window is named the Navigator area. The row of
icons at the top determines which navigator is visible. Currently that is the Project
navigator, which shows the list of files in your project.

The organization of these files roughly corresponds to the project folder on your
hard disk, but that isn’t necessarily always so. You can move files around and put
them into new groups to your heart’s content. We’ll talk more about the different
files that your project has later.

➤ In the Project navigator, find the item named Main.storyboard and click it
once to select it:

The Project navigator lists the files in the project

Like a superhero changing his clothes in a phone booth, the main editing pane now
transforms into the Interface Builder. This tool lets you drag-and-drop user
interface components such as buttons into the app. (OK, bad analogy, but Interface
Builder is a super tool in my opinion.)

➤ If it’s not already blue, click the Hide or show utilities button in Xcode’s
toolbar:

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 24

Click this button to show the Utilities pane

These toolbar buttons change the appearance of Xcode. This one in particular opens
a new pane on the right side of the Xcode window.

Your Xcode should now look something like this:

Editing Main.storyboard in Interface Builder

This is the storyboard for your app. The storyboard contains the designs for all of
your app’s screens, and shows how the app goes from one screen to another with
big pointy arrows.

Currently the storyboard contains just a single screen or scene, represented by a
rectangle in the middle of the Interface Builder canvas.

Note: If you don’t see the rectangle labeled “View Controller” but only an
empty white canvas, then use your mouse or trackpad to scroll the storyboard
around a bit. Trust me, it’s in there somewhere! Also make sure your Xcode
window is large enough. Interface Builder takes up a lot of space…

The scene currently has the size of an iPhone 6s or iPhone 7. To keep things simple,
you will first design the app for the iPhone SE, which has a slightly smaller screen.
Later you’ll also make the app fit on the larger iPhone 6s, 7, and Plus.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 25

➤ At the bottom of the Interface Builder window, click View as: iPhone 6s to open
up the following panel:

Choosing the device type

Select the iPhone SE, the second smallest iPhone. The scene’s rectangle now
becomes a bit smaller too. This corresponds to the screen size of the iPhone 5,
iPhone 5s, and iPhone SE models.

➤ In the Xcode toolbar, make sure it say BullsEye > iPhone SE (next to the Stop
button). If it doesn’t then click it and pick iPhone SE from the list:

Switching the Simulator to iPhone SE

Now when you run the app, it will run on the iPhone SE Simulator (try it out!).

Back to the storyboard:

➤ At the bottom of the Utilities pane you will find the Object Library (make sure
the third button, the one that looks like a circle, is selected):

The Object Library

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 26

Scroll through the items in the Object Library’s list until you see Button.

➤ Click on Button and drag it into the working area, on top of the scene’s
rectangle.

Dragging the button on top of the scene

That’s how easy it is to add new buttons, just drag & drop. That goes for all other
user interface elements too. You’ll be doing a lot of this, so take some time to get
familiar with the process.

➤ Drag-and-drop a few other controls, such as labels, sliders, and switches, just to
get the hang of it.

This should give you some idea of the UI controls that are available in iOS. Notice
that the Interface Builder helps you to layout your controls by snapping them to the
edges of the view and to other objects. It’s a very handy tool!

➤ Double-click the button to edit its title. Call it Hit Me!

The button with the new title

It’s possible that your button has a border around it:

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 27

The button with a bounds rectangle

This border is not part of the button, it’s just there to show you how large the
button is. You can turn these rectangles on or off using the Editor → Canvas →
Show Bounds Rectangles menu option.

When you’re done playing with Interface Builder, press the Run button from Xcode’s
toolbar. The app should now appear in the Simulator, complete with your “Hit Me!”
button. However, when you tap the button it doesn’t do anything yet. For that you’ll
have to write some Swift code!

The source code editor
A button that doesn’t do anything when tapped is of no use to anyone, so let’s
make it show an alert popup. In the finished game the alert will display the player’s
score, but for now we shall limit ourselves to a simple text message (the traditional
“Hello, World!”).

➤ In the Project navigator, click on ViewController.swift.

The Interface Builder will disappear and the editor area now contains a bunch of
brightly colored text. This is the Swift source code for your app:

The source code editor

➤ Add the following lines directly above the very last } bracket in the file:

@IBAction func showAlert() {
}

The source code for ViewController.swift should now look like this:

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 28

//
// ViewController.swift
// BullsEye
//
// Created by <you> on <date>.
// Copyright © <year> <you>. All rights reserved.
//

import UIKit

class ViewController: UIViewController {

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically
 from a nib.
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

 @IBAction func showAlert() {
 }
}

How do you like your first taste of Swift? Before I can tell you what this all means, I
first have to introduce the concept of a view controller.

Xcode will autosave

You don’t have to save your files after you make changes to them because
Xcode will automatically save any modified files when you press the Run
button. Nevertheless, Xcode isn’t the most stable piece of software out there
and occasionally it may crash on you before it has had a chance to save your
changes, so I still like to press ⌘+S on a regular basis to save my files.

View controllers
You’ve edited the Main.storyboard file to build the user interface of the app. It’s
only a button on a white background, but a user interface nonetheless. You also
added source code to ViewController.swift.

These two files – the storyboard and the Swift file – together form the design and
implementation of a view controller. A lot of the work in building iOS apps is making
view controllers. The job of a view controller is to manage a single screen from your
app.

Take a simple cookbook app, for example. When you launch the cookbook app, its
main screen lists the available recipes. Tapping a recipe opens a new screen that
shows the recipe in detail with an appetizing photo and cooking instructions. Each

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 29

of these screens is managed by its own view controller.

The view controllers in a simple cookbook app

What these two screens do is very different. One is a list of several items; the other
presents a detail view of a single item.

That’s why you also need two view controllers: one that knows how to deal with
lists, and another that can handle images and cooking instructions. One of the
design principles of iOS is that each screen in your app gets its own view controller.

Currently Bull’s Eye has only one screen (the white one with the button on top) and
thus only needs one view controller. That view controller is simply named
“ViewController” and the storyboard and Swift file work together to implement it.

Simply put, the Main.storyboard file contains the design of the view controller’s
user interface, while ViewController.swift contains its functionality – the logic that
makes the user interface work, written in the Swift language.

Because you used the Single View Application template, Xcode automatically
created the view controller for you. Later you will add a second screen to the game
and you will create your own view controller for that.

Making connections
The line of source code you have just added to ViewController.swift lets Interface
Builder know that the controller has a “showAlert” action, which presumably will
show an alert popup. You will now connect the button to that action.

➤ Click Main.storyboard to go back into Interface Builder.

There should be a pane on the left, the Outline pane, that lists all the items in
your storyboard. If you do not see that pane, click the small toggle button in the

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 30

bottom-left corner of the Interface Builder canvas to reveal it.

The button that shows the Outline pane

➤ Click the Hit Me button once to select it.

With the Hit Me button selected, hold down the Ctrl key, click on the button and
drag up to the View Controller item in the Outline pane. You should see a blue
line going from the button up to View Controller.

(Instead of holding down Ctrl, you can also right-click and drag, but don’t let go of
the mouse button before you start dragging.)

Ctrl-drag from the button to View Controller

Once you’re on View Controller, let go of the mouse button and a small menu will
appear. It contains two sections, “Action Segue” and “Sent Events”, with one or
more options below each. You’re interested in the showAlert option under Sent
Events. This is the name of the action that you added earlier in the source code of
ViewController.swift.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 31

The popup menu with the showAlert action

➤ Click on showAlert to select it. This instructs Interface Builder to make a
connection between the button and the line @IBAction func showAlert().

From now on, whenever the button is tapped the showAlert action will be
performed. That is how you make buttons and other controls do things: you define
an action in the view controller’s Swift file and then you make the connection in
Interface Builder.

You can see that the connection was made by going to the Connections inspector
in the Utilities pane on the right side of the Xcode window.

➤ Click the small arrow-shaped button at the top of the pane to switch to the
Connections inspector:

The inspector shows the connections from the button to any other objects

In the Sent Events section, the “Touch Up Inside” event is now connected to the
showAlert action. You can also see the connection in the Swift file.

➤ Select ViewController.swift to edit it.

Notice how to the left of the line with @IBAction func showAlert(), there is a solid
circle? Click on that circle to reveal what this action is connected to.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 32

A solid circle means the action is connected to something

Acting on the button
You now have a screen with a button. The button is hooked up to an action named
showAlert that will be performed when the user taps the button.

Currently, however, the action is empty and nothing will happen (try it out). You
need to give the app more instructions.

➤ In ViewController.swift, add the following lines to showAlert:

@IBAction func showAlert() {
 let alert = UIAlertController(title: "Hello, World",
 message: "This is my first app!",
 preferredStyle: .alert)

 let action = UIAlertAction(title: "Awesome", style: .default,
 handler: nil)

 alert.addAction(action)

 present(alert, animated: true, completion: nil)
}

These new lines provide the actual functionality of this action.

The commands between the { } brackets tell the iPhone what to do, and they are
performed from top to bottom.

The code in showAlert creates an alert with a title “Hello, World”, a message “This is
my first app!” and a single button labeled “Awesome”.

If you’re not sure about the distinction between the title and the message: both
show text, but the title is slightly bigger and in a bold typeface.

➤ Click the Run button from Xcode’s toolbar. If you didn’t make any typos, your
app should launch in the Simulator and you should see the alert box when you tap
the button.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 33

The alert popup in action

Congratulations, you’ve just written your first iOS app! What you just did may have
been mostly gibberish to you, but that shouldn’t matter. We take it one small step
at a time.

You can strike off the first two items from the to-do list already: putting a button on
the screen and showing an alert when the user taps the button.

Take a little break, let it all sink in, and come back when you’re ready for more!
You’re only just getting started…

Note: Just in case you get stuck, I have provided the complete Xcode projects
for several checkpoints in this tutorial inside the Source Code folder that
comes with this tutorial. That way you can compare your version of the app to
mine, or – if you really make a mess of things – continue from a version that
is known to work.

You can find the project files for the app you’ve made thus far in the 01 - One
Button App folder.

Problems?
If Xcode gives you a “Build Failed” error message after you press Run, then make
sure you typed in everything correctly. Even the smallest mistake will totally
confuse Xcode. It can be quite overwhelming to make sense out of the error
messages. A small typo at the top of the source code can produce several errors
elsewhere in that file.

Typical mistakes are differences in capitalization. The Swift programming language
is case-sensitive, which means it sees Alert and alert as two different names.
Xcode complains about this with a “<something> undeclared” or “Use of unresolved

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 34

identifier” error.

When Xcode says things like “Parse Issue” or “Expected <something>” then you
probably forgot a curly bracket } or parenthesis) somewhere. Not matching up
opening and closing brackets is a common error.

(Tip: If you move the text cursor over a closing bracket, Xcode will highlight the
corresponding opening bracket.)

Tiny details like this are very important when you’re programming. Even one single
misplaced character can prevent the Swift compiler from building your app.

Fortunately, such mistakes are easy to find.

Xcode makes sure you can’t miss errors

When Xcode detects an error it switches the pane on the left, where your project
files used to be, to the Issue navigator. This list shows all the errors and warnings
that Xcode has found. (You can go back to the project files with the small buttons
at the top.)

Apparently, I forgot a comma somewhere.

Click on the error message and Xcode takes you to the line in the source code with
the error. It even suggests what you need to do to resolve it:

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 35

Fix-it suggests a solution to the problem

Sometimes it’s a bit of a puzzle to figure out what exactly you did wrong when your
build fails, but fortunately Xcode lends a helping hand.

Errors and warnings

Xcode makes a distinction between errors (red) and warnings (yellow). Errors
are fatal. If you get one, you are not allowed to run the app. Warnings are
informative. Xcode just says, “You probably didn’t mean to do this, but go
ahead anyway.”

In my opinion, it is best to treat all warnings as if they were errors. Fix the
warning before you continue and only run your app when there are zero errors
and zero warnings. That doesn’t guarantee the app won’t have any bugs, but
at least it won’t be silly ones.

How does an app work?
It will be good at this point to get some sense of what goes on behind the scenes of
an app.

An app is essentially made up of objects that can send messages to each other.
Many of the objects in your app are provided by iOS, for example the button – a
UIButton object – and the alert popup – a UIAlertController object. Some objects
you will have to program yourself, such as the view controller.

These objects communicate by passing messages to each other. When the user taps
the Hit Me button in the app, for example, that UIButton object sends a message to
your view controller. In turn the view controller may message more objects.

On iOS, apps are event-driven, which means that the objects listen for certain
events to occur and then process them.

As strange as it may sound, an app spends most of its time doing… absolutely
nothing. It just sits there waiting for something to happen. When the user taps the
screen, the app springs to action for a few milliseconds and then it goes back to
sleep again until the next event arrives.

Your part in this scheme is that you write the source code that will be performed
when your objects receive the messages for such events.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 36

In the app, the button’s Touch Up Inside event is connected to the view controller’s
showAlert action. So when the button recognizes it has been tapped, it sends the
showAlert message to your view controller.

Inside showAlert, the view controller sends another message, addAction, to the
UIAlertController object. And to show the alert, the view controller sends the
present message.

Your whole app will be made up of objects that communicate in this fashion.

The general flow of events in an app

Maybe you have used PHP or Ruby scripts on your web site. This event-based
model is different from how a PHP script works. The PHP script will run from top-to-
bottom, executing the statements one-by-one until it reaches the end and then it
exits.

Apps, on the other hand, don’t exit until the user terminates them (or they crash!).
They spend most of their time waiting for input events, then handle those events
and go back to sleep.

Input from the user, mostly in the form of touches and taps, is the most important
source of events for your app but there are other types of events as well. For
example, the operating system will notify your app when the user receives an
incoming phone call, when it has to redraw the screen, when a timer has counted
down, and many more.

Everything your app does is triggered by some event.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 37

Working our way down the to-do list
Now that you have accomplished the first task of putting a button on the screen
and making it show an alert, you’ll simply go down the list and tick off the other
items.

You don’t really have to do this in any particular order, although some things make
sense to do before others. For example, you cannot read the position of the slider if
you don’t have a slider yet.

So let’s add the rest of the controls – the slider and the text labels – and turn this
app into a real game!

When you’re done, the app will look like this:

The game screen with standard UIKit controls

Hey, wait a minute… that doesn’t look nearly as pretty as the game I promised you!
The difference is that these are the standard UIKit controls. This is what they look
like straight out of the box.

You’ve probably seen this look before because it is perfectly suitable for regular
apps. But because the default look is a little boring for a game, you’ll put some
special sauce on top later in this lesson.

UIKit and other frameworks

iOS offers a lot of building blocks in the form of frameworks or “kits”. The UIKit
framework provides the user interface controls such as buttons, labels and
navigation bars. It manages the view controllers and generally takes care of
anything else that deals with your app’s user interface. (That is what UI stands
for: User Interface.)

If you had to write all that stuff from scratch, you’d be busy for a while.
Instead, you can build your app on top of the system-provided frameworks
and take advantage of all the work the Apple engineers have already done for

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 38

you.

Any object you see whose name starts with UI, such as UIButton, comes from
UIKit. When you’re writing iOS apps, UIKit is the framework you’ll spend most
of your time with but there are others as well.

Examples of other frameworks are Foundation, which provides many of the
basic building blocks for building apps; Core Graphics for drawing basic shapes
such as lines, gradients and images on the screen; AVFoundation for playing
sound and video; and many others.

The complete set of frameworks for iOS is known collectively as Cocoa Touch.

Portrait vs. landscape
Notice that the dimensions of the app have changed: the iPhone is tilted on its side
and the screen is wider but less tall. This is called landscape orientation.

You’ve no doubt seen landscape apps before on the iPhone. It’s a common display
orientation for games but many other types of apps work in landscape mode too,
usually in addition to the regular “upright” portrait orientation.

For instance, many people prefer to write emails with their device flipped over
because the wider screen allows for a bigger keyboard and easier typing.

In portrait orientation, the iPhone SE screen consists of 320 points horizontally and
568 points vertically. For landscape these dimensions are switched.

Screen dimensions for portrait and landscape orientation

So what is a point?

On older devices – up to the iPhone 3GS and corresponding iPod touch models, as
well as the first iPads – one point corresponds to one pixel. As a result, these low-

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 39

resolution devices don’t look very sharp because of their big, chunky pixels.

I’m sure you know what a pixel is. In case you don’t, it’s the smallest element that
a screen is made up of. The display of your iPhone is a big matrix of pixels that
each can have their own color, just like a TV screen. Changing the color values of
these pixels produces a visible image on the display. The more pixels, the better the
image looks.

On the high-resolution Retina display of the iPhone 4 and later models, one point
actually corresponds to two pixels horizontally and vertically, so four pixels in total.
It packs a lot of pixels in a very small space, making for a much sharper display,
which accounts for the popularity of Retina devices.

On the Plus it’s even crazier: it has a 3x resolution with nine pixels for every point.
Insane! You need to be eagle-eyed to make out the individual pixels on this fancy
Retina HD display. It becomes almost impossible to make out where one pixel ends
and the next one begins, that’s how miniscule they are.

It’s not only the number of pixels that differs between the various iPhone models.
Over the years they have received different form factors, from the small 3.5-inch
screen in the beginning all the way up to 5.5-inches on the iPhone 6s Plus and 7
Plus.

The form factor determines the width and height of the screen in points:

In the early days of iOS, there was only one screen size. But those days of “one
size fits all” are long gone. Now we have a variety of screen sizes to deal with.

Remember that UIKit works with points instead of pixels, so you only have to worry
about the differences between the screen sizes measured in points. The actual
number of pixels is only important for graphic designers because images are still
measured in pixels.

Developers work in points, designers work in pixels.

The difference between points and pixels can be a little confusing, but if that is the
only thing you’re confused about right now then I’m doing a pretty good job. ;-)

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 40

In this tutorial you’ll initially work with just the iPhone SE screen size of 320×568
points – just to keep things simple. Later on in the tutorial you’ll also make the
game fit on the other types of iPhones.

Converting the app to landscape
To turn the app from portrait into landscape, you have to do two things:

1. Make the view in Main.storyboard landscape instead of portrait.

2. Change the Supported Device Orientations settings of the app.

➤ Open Main.storyboard in the Interface Builder. In the View as: iPhone SE
panel, change Orientation to landscape:

Changing the orientation in Interface Builder

This changes the dimensions of the view controller. It also puts the button in an
awkward place.

➤ Move the button back to the center of the view because an untidy user interface
just won’t do in this day and age.

The view in landscape orientation

That takes care of the view layout.

➤ Run the app on the iPhone SE Simulator. The screen does not show up as
landscape yet, and the button is no longer in the center either.

However, if you rotate the Simulator to landscape, then everything will look as it
should.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 41

➤ Choose Hardware → Rotate Left or Rotate Right from the Simulator’s menu
bar at the top of the screen, or hold ⌘ and press the left or right arrow keys on
your keyboard. This will flip the Simulator around.

Notice that in landscape orientation the app no longer shows the iPhone’s status
bar. This gives apps more room for their user interfaces.

You should do one more thing. There is a configuration option that tells iOS what
orientations your app supports. New apps that you make from the template always
support both portrait and landscape orientation.

➤ Click the blue BullsEye project icon at the top of the Project navigator. The
editor pane of the Xcode window now reveals a bunch of settings for the project.

➤ Make sure that the General tab is selected:

The settings for the project

In the section Deployment Info, there is an option for Device Orientation.

➤ Check only the Landscape Left and Landscape Right options and leave the
Portrait and Upside Down options unchecked.

Run the app again and it properly launches in the landscape orientation right from
the beginning.

Objects, data and methods
Time for some programming theory. Yes, you cannot escape it.

Swift is a so-called “object-oriented” programming language, which means that
most of the stuff you do involves objects of some kind. I already mentioned a few

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 42

times that an app consists of objects that send messages to each other.

When you write an iOS app, you’ll be using objects that are provided for you by the
system, such as the UIButton object from UIKit, and you’ll be making objects of
your own, such as view controllers.

So what exactly is an object? Think of an object as a building block of your
program.

Programmers like to group related functionality into objects. This object takes care
of parsing a file, that object knows how to draw an image on the screen, and that
object over there can perform a difficult calculation.

Each object takes care of a specific part of the program. In a full-blown app you will
have many different types of objects (tens or even hundreds).

Even your small starter app already contains several different objects. The one you
have spent the most time with so far is ViewController. The Hit Me button is also
an object, as is the alert popup. And the texts that you put on the alert – “Hello,
World” and “This is my first app!” – are also objects.

The project also has an object named AppDelegate, even though you’re going to
ignore that for this lesson (but feel free to look inside its source file if you’re
curious). These object thingies are everywhere!

An object can have both data and functionality:

• An example of data is the Hit Me button that you added to the view controller
earlier. When you dragged the button into the storyboard, it actually became part
of the view controller’s data. Data contains something. In this case, the view
controller contains the button.

• An example of functionality is the showAlert action that you added to respond to
taps on that button. Functionality does something.

The button itself also has data and functionality. Examples of button data are the
text and color of its label, its position on the screen, its width and height, and so
on. The button also has functionality: it can recognize that the user taps on it and
will trigger an action in response.

The thing that provides functionality to an object is commonly called a method.
Other programming languages may call this a “procedure” or “subroutine” or
“function”. You will also see the term function used in Swift; a method is simply a
function that belongs to an object.

Your showAlert action is an example of a method. You can tell it’s a method because
the line says func (short for “function”) and the name is followed by parentheses:

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 43

All method definitions start with the word func and have parentheses

If you look through the rest of ViewController.swift you’ll see several other
methods, such as viewDidLoad() and didReceiveMemoryWarning().

These currently don’t do much; the Xcode template placed them there for your
convenience. These specific methods are often used by view controllers, so it’s
likely that you will need to fill them in at some point.

The concept of methods may still feel a little weird, so here’s an example:

Every party needs ice cream!

You (or at least an object named “You”) want to throw a party but you forgot to buy
ice cream. Fortunately, you have invited the object named Steve who happens to
live next door to a convenience store. It won’t be much of a party without ice
cream, so at some point during your party preparations you send object Steve a
message asking him to bring some ice cream.

The computer now switches to object Steve and executes the commands from his
buyIceCream() method, one by one, from top to bottom.

When his method is done, the computer returns to your throwParty() method and
continues with that, so you and your friends can eat the ice cream that Steve
brought back with him.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 44

The Steve object also has data. Before he goes to the store he has money. At the
store he exchanges this money data for other, much more important, data: ice
cream! After making that transaction, he brings the ice cream data over to the
party (if he eats it all along the way, your program has a bug).

“Sending a message” sounds more involved than it really is. It’s a good way to
think conceptually of how objects communicate, but there really aren’t any pigeons
or mailmen involved. The computer simply jumps from the throwParty() method to
the buyIceCream() method and back again.

Often the terms “calling a method” or “invoking a method” are used instead. That
means the exact same thing as sending a message: the computer jumps to the
method you’re calling and returns to where it left off when that method is done.

The important thing to remember is that objects have methods (the steps involved
in buying ice cream) and data (the actual ice cream and the money to buy it with).

Objects can look at each other’s data (to some extent anyway, just like Steve may
not approve if you peek inside his wallet) and can ask other objects to perform their
methods. That’s how you get your app to do things.

Adding the rest of the controls
Your app already has a button but you still need to add the rest of the UI controls,
also known as “views”. Here is the screen again, this time annotated with the
different types of views:

The different views in the game screen

As you can see, I put placeholder values into some of the labels (for example,
“999999”). That makes it easier to see how the labels will fit on the screen when
they’re actually used. The score label could potentially hold a large value, so you’d
better make sure the label has room for it.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 45

➤ Try to re-create this screen on your own by dragging the various controls from
the Object Library. You’ll need a few new Buttons, Labels, and a Slider. You can see
in the screenshot above how big the items should (roughly) be. It’s OK if you’re a
few points off.

To tweak the settings of these views, you use the Attributes inspector. You can
find this inspector in the pane on the right-hand side of the Xcode window:

The Attributes inspector

The inspector area shows various aspects of the item that is currently selected. The
Attributes inspector, for example, lets you change the background color of a label or
the size of the text on a button. You’ve already seen the Connections inspector that
showed the button’s actions. As you become more proficient with Interface Builder,
you’ll be using all of these inspector panes to configure your views.

➤ The (i) button is actually a regular Button, but its Type is set to Info Light in
the Attributes inspector:

The button type lets you change the look of the button

➤ Also use the Attributes inspector to configure the slider. Its minimum value
should be 1, its maximum 100, and its current value 50.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 46

The slider attributes

When you’re done, you should have 12 user interface elements in your scene: one
slider, three buttons and a whole bunch of labels. Excellent.

➤ Run the app and play with it for a minute. The controls don’t really do much yet
(except for the button that should still pop up the alert), but you can at least drag
the slider around.

You can tick a few more items off the to-do list, all without any programming! That
is going to change really soon, because you will have to write Swift code to actually
make the controls do anything.

The slider
The next item on your to-do list is: “Read the value of the slider after the user
presses the Hit Me button.”

If, in your messing around in Interface Builder, you did not accidentally disconnect
the button from the showAlert action, you can modify the app to show the slider’s
value in the alert popup. (If you did disconnect the button, then you should hook it
up again first.)

Remember how you added an action to the view controller in order to recognize
when the user tapped the button? You can do the same thing for the slider. This
new action will be performed whenever the user drags the slider’s knob.

The steps for adding this action are largely the same as what you did before.

➤ First, go to ViewController.swift and add the following at the bottom, just
before the final closing bracket:

@IBAction func sliderMoved(_ slider: UISlider) {
 print("The value of the slider is now: \(slider.value)")
}

➤ Second, go to the storyboard and Ctrl-drag from the slider to View Controller in
the Outline pane. Let go of the mouse button and select sliderMoved: from the
popup. Done!

Just to refresh your memory, the Outline pane sits on the left-hand side of the
Interface Builder canvas. It shows the view hierarchy of the storyboard. Here you

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 47

can see that the View Controller contains a white view (simply named View) that
spans the size of the scene, which in turn contains the sub-views you’ve added: the
buttons and labels.

The Outline pane shows the view hierarchy of the storyboard

Remember, if the Outline pane is not visible, click the little icon at the bottom to
reveal it:

This button shows or hides the Outline pane

When you connect the slider, make sure to Ctrl-drag to View Controller (with the
yellow icon), not View Controller Scene (gray icon). If you don’t see the yellow icon,
then click the arrow in front of View Controller Scene to expand it.

If all went well, the sliderMoved: action is now hooked up to the slider’s Value
Changed event. This means the sliderMoved() method will be called every time the
user drags the slider to the left or right.

You can verify that the connection was made by selecting the slider and looking at
the Connections inspector:

The slider is now hooked up to the view controller

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 48

Note: Did you notice that the sliderMoved: action has a colon in its name but
showAlert does not? That’s because the sliderMoved() method takes a single
parameter, slider, while showAlert() does not have any parameters. If an
action method has a parameter, Interface Builder adds a : to the name. You’ll
learn more about using parameters soon.

➤ Run the app and drag the slider.

As soon as you start dragging, the Xcode window opens a new pane at the bottom,
the so-called Debug area, showing a list of messages:

Printing messages in the Debug area

If you swipe the slider all the way to the left, you should see the value go down to
1. All the way to the right, the value should be 100.

The print() function is a great help to show you what is going on in the app. Its
entire purpose is to write a text message to the Debug area. Here, you used it to
verify that you properly hooked up the action to the slider and that you can read its
value as the slider is moved.

I often use print() to make sure my apps are doing the right thing before I add
more functionality. Printing a message to the Debug area is quick and easy.

Note: You may see a bunch of other messages in the Debug area too. This is
debug output from UIKit and the iOS Simulator. You can safely ignore these
messages.

Strings
To put text in your app, you use something called a “string”. The strings you have
used so far are:

"Hello, World"
"This is my first app!"
"Awesome"
"The value of the slider is now: \(slider.value)"

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 49

The first three were used to make the UIAlertController; the last one you used
with print() above.

Such a chunk of text is called a string because you can visualize the text as a
sequence of characters, as if they were beads on a piece of string (sorry, it doesn’t
have anything to do with underwear):

A string of characters

Working with strings is something you need to do all the time when you’re writing
apps, so over the course of this tutorial series you’ll get quite experienced with it.

To create a string, simply put the text in between double quotes. In other
languages you can often use single quotes as well, but in Swift they must be double
quotes. And they must be plain double quotes, not typographic “sixes and nines”.

To summarize:

// This is the proper way to make a Swift string:
"I am a good string"

// These are wrong:
'I should have double quotes'
''Two single quotes do not make a double quote''
“My quotes are too fancy”
@"I am an Objective-C string"

Anything between the characters \(…) inside a string is special. The print()
statement used the string, "The value of the slider is now: \(slider.value)".
Think of the \(…) as a placeholder: "The value of the slider is now: X", where
X will be replaced by the value of the slider.

Filling in the blanks is a very common way to build up strings in Swift.

Introducing variables
Printing information with print() to the Debug pane is very useful during
development of the app, but it’s absolutely useless to the user because they can’t
see any of this.

Let’s improve this action method and make it show the value of the slider in the

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 50

alert popup. So how do you get the slider’s value into showAlert()?

When you read the slider’s value in sliderMoved(), that piece of data disappears
when the action method ends. It would be handy if you could remember this value
until the user taps the Hit Me button.

Fortunately, Swift has a building block exactly for this purpose: the variable.

➤ Open ViewController.swift and add the following at the top, directly below the
line that says class ViewController:

var currentValue: Int = 0

You have now added a variable named currentValue to the view controller object.

The code should look like this (I left out the insides of the methods):

import UIKit

class ViewController: UIViewController {
 var currentValue: Int = 0

 override func viewDidLoad() {
 . . .
 }

 override func didReceiveMemoryWarning() {
 . . .
 }

 @IBAction func showAlert() {
 . . .
 }

 @IBAction func sliderMoved(_ slider: UISlider) {
 . . .
 }
}

It is customary to add the variables above the methods, and to indent everything
with a tab or two to four spaces. Which one you use is largely a matter of personal
preference. I like to use two spaces. (You can configure this in Xcode’s preferences
panel. From the menu bar choose Xcode → Preferences… → Text Editing and go to
the Indentation tab.)

Remember when I said that a view controller, or any object really, could have both
data and functionality? The showAlert() and sliderMoved() actions are examples of
functionality, while the currentValue variable is part of its data.

A variable allows the app to remember things. Think of a variable as a temporary
storage container for a single piece of data. There are containers of all sorts and
sizes, just as data comes in all kinds of shapes and sizes.

You don’t just put stuff in the container and then forget about it. You will often

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 51

replace its contents with a new value. When the thing that your app needs to
remember changes, you take the old value out of the box and put in the new value.

That’s the whole point behind variables: they can vary. For example, you will
update currentValue with the new position of the slider every time the slider is
moved.

The size of the storage container and the sort of values the variable can remember
are determined by its data type, or just type.

You specified the type Int for the currentValue variable, which means this container
can hold whole numbers (also known as “integers”) between at least minus two
billion and plus two billion. Int is one of the most common data types but there are
many others and you can even make your own.

Variables are like children’s toy blocks:

Variables are containers that hold values

The idea is to put the right shape in the right container. The container is the
variable and its type determines what “shape” fits. The shapes are the possible
values that you can put into the variables.

You can change the contents of each box later. For example, you can take out the
blue square and put in a red square, as long as both are squares.

But you can’t put a square in a round hole: the data type of the value and the data
type of the variable have to match.

I said a variable is a temporary storage container. How long will it keep its
contents? Unlike meat or vegetables, variables won’t spoil if you keep them for too
long – a variable will hold onto its value indefinitely, until you put a new value into
that variable or until you destroy the container altogether.

Each variable has a certain lifetime (also known as its scope) that depends on

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 52

exactly where in your program you defined that variable. In this case, currentValue
sticks around for just as long as its owner, ViewController, does. Their fates are
intertwined.

The view controller, and thus currentValue, is there for the duration of the app.
They don’t get destroyed until the app quits. Soon you’ll also see variables that live
much shorter (so-called “local” variables).

Enough theory, let’s make this variable work for us.

➤ Change the contents of the sliderMoved() method in ViewController.swift to
the following:

@IBAction func sliderMoved(_ slider: UISlider) {
 currentValue = lroundf(slider.value)
}

You removed the print() statement and replaced it with this line:

currentValue = lroundf(slider.value)

What is going on here?

You’ve seen slider.value before, which is the slider’s position at that moment. This
is a value between 1 and 100, possibly with digits behind the decimal point. And
currentValue is the name of the variable you have just created.

To put a new value into a variable, you simply do this:

variable = the new value

This is known as “assignment”. You assign the new value to the variable. It puts the
shape into the box. Here, you put the value that represents the slider’s position into
the currentValue variable.

Easy enough, but what is the lroundf thing? Recall that the slider’s value can have
numbers behind the decimal point. You’ve seen this with the print() output in the
Debug pane as you moved the slider.

However, this game would be really hard if you made the player guess the position
of the slider with an accuracy that goes behind the decimal point. That will be
nearly impossible to get right!

It is more fair to use whole numbers only. That is why currentValue has data type
Int, because that type stores integers, a fancy term for whole numbers.

You use the function lroundf() to round the decimal number to the nearest whole
number and you then store that rounded-off number into currentValue.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 53

Functions and methods

You’ve already seen that methods provide functionality, but functions are
another way to put functionality into your apps (the name sort of gives it
away). Functions and methods are how Swift programs combine multiple lines
of code into single, cohesive units.

The difference between the two is that a function doesn’t belong to an object
while a method does. In other words, a method is exactly like a function –
that’s why you use the func keyword to define them – except that you need to
have an object to use the method. But regular functions, or free functions as
they are sometimes called, can be used anywhere.

Swift provides your programs with a large library of useful functions. The
function lroundf() is one of them and you’ll be using a few others during this
lesson as well. print() is also a function, by the way. You can tell because the
function name is always followed by parentheses that possibly contain one or
more parameters.

➤ Now change the showAlert() method to the following:

@IBAction func showAlert() {
 let message = "The value of the slider is: \(currentValue)"

 let alert = UIAlertController(title: "Hello, World",
 message: message, // changed
 preferredStyle: .alert)

 let action = UIAlertAction(title: "OK", // changed
 style: .default, handler: nil)

 alert.addAction(action)

 present(alert, animated: true, completion: nil)
}

The line with let message = is new. Also note the other two small changes.

As before, you create and show a UIAlertController, except this time its message
says: “The value of the slider is: X”, where X is replaced by the contents of the
currentValue variable (a whole number between 1 and 100).

Suppose currentValue is 34, which means the slider is about one-third to the left.
The new code above will convert the string "The value of the slider is: \
(currentValue)" into "The value of the slider is: 34" and puts that into a new
object named message.

The old print() did something similar, except that it printed the result to the Debug
pane. Here, however, you do not wish to print the result but show it in the alert
popup. That is why you tell the UIAlertController that it should now use this new
string as the message to display.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 54

➤ Run the app, drag the slider, and press the button. Now the alert should show the
actual value of the slider.

The alert shows the value of the slider

Cool. You have used a variable, currentValue, to remember a particular piece of
data, the rounded-off position of the slider, so that it can be used elsewhere in the
app, in this case in the alert’s message text.

If you tap the button again without moving the slider, the alert will still show the
same value. The variable keeps its value until you put a new one into it.

Your first bug
There is a small problem with the app, though. Maybe you’ve noticed it already.
Here is how to reproduce the problem:

➤ Press the Stop button in Xcode to completely terminate the app, then press Run
again. Without moving the slider, immediately press the Hit Me button.

The alert now says: “The value of the slider is: 0”. But the slider’s knob is obviously
at the center, so you would expect the value to be 50. You’ve discovered a bug!

Exercise: Think of a reason why the value would be 0 in this particular situation
(start the app, don’t move the slider, press the button).

Answer: The clue here is that this only happens when you don’t move the slider. Of
course, without moving the slider the sliderMoved() message is never sent and you
never put the slider’s value into the currentValue variable.

The default value for the currentValue variable is 0, and that is what you are seeing
here.

➤ To fix this bug, change the declaration of currentValue to:

var currentValue: Int = 50

Now the starting value of currentValue is 50, which should be the same value as
the slider’s initial position.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 55

➤ Run the app again and verify that the bug is solved.

You can find the project files for the app up to this point under 02 - Slider and
Variables in the tutorial’s Source Code folder.

Enough playing around… let’s make a game!
You’ve built the user interface and you know how to find the position of the slider.
That already knocks quite a few items off the to-do list.

The big remaining items are generating the random value for the target and
calculating how well the player did. But first, there’s still an improvement to make
on the slider.

Outlets
You managed to store the value of the slider into a variable and show it on the
alert. That’s good but you can still improve on it a little.

What if you decide to set the initial value of the slider in the storyboard to
something other than 50, say 1 or 100? Then currentValue would be wrong again
because the app always assumes it will be 50 at the start. You’d have to remember
to also fix the code to give currentValue a new initial value.

Take it from me, those kinds of small things are hard to remember, especially when
the project becomes bigger and you have dozens of view controllers to worry about,
or when you haven’t looked at the code for weeks.

Therefore, to fix this issue once and for all, you’re going to do some work inside the
viewDidLoad() method in ViewController.swift. That method currently looks like
this:

override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically
 from a nib.
}

When you created this project based on Xcode’s template, Xcode already put the
viewDidLoad() method into the source code. You will now add some code to it.

The viewDidLoad() message is sent by UIKit as soon as the view controller loads its
user interface from the storyboard file. At this point, the view controller isn’t visible
yet, so this is a good place to set instance variables to their proper initial values.

➤ Change viewDidLoad() to the following:

override func viewDidLoad() {
 super.viewDidLoad()

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 56

 currentValue = lroundf(slider.value)
}

The idea is that you take whatever value is set on the slider in the storyboard
(whether it is 50, 1, 100, or anything else) and use that as the initial contents of
currentValue.

Recall that you need to round off the number, because currentValue is an Int and
integers cannot take digits behind the decimal point.

Unfortunately, Xcode complains about these changes when you press Run. Try it for
yourself.

➤ Try to run the app.

Xcode says “Build Failed”, followed by something like: “Error: Use of unresolved
identifier ‘slider’”.

That happens because viewDidLoad() does not know anything named slider.

Then why did this work earlier, in sliderMoved()? Let’s take a look at that method
again:

@IBAction func sliderMoved(_ slider: UISlider) {
 currentValue = lroundf(slider.value)
}

Here you do the exact same thing: you round off slider.value and put it into
currentValue. So why does it work here but not in viewDidLoad()?

The difference is that slider is a so-called parameter of the sliderMoved() method.
Parameters are the things inside the parentheses following a method’s name. In
this case there’s a single parameter named slider, which refers to the UISlider
object that sent this action message.

Action methods can have a parameter that refers to the UI control that triggered
the method. That is convenient when you wish to use that object in the method,
just as you did here (the object in question being the UISlider).

When the user moves the slider, the UISlider object basically says, “Hey view
controller, I’m a slider object and I just got moved. By the way, here’s my phone
number so you can get in touch with me.”

The slider parameter contains this “phone number” but it is only valid for the
duration of this particular method.

In other words, slider is local; you cannot use it anywhere else.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 57

Locals
When I first introduced variables, I mentioned that each variable has a certain
lifetime, known as its scope. The scope of a variable depends on where in your
program you defined that variable.

There are three possible scope levels in Swift:

1. Global scope. These objects exist for the duration of the app and are
accessible from anywhere.

2. Instance scope. This is for variables such as currentValue. These objects are
alive for as long as the object that owns them stays alive.

3. Local scope. Objects with a local scope, such as the slider parameter of
sliderMoved(), only exist for the duration of that method. As soon as the
execution of the program leaves this method, the local objects are no longer
accessible.

Let’s look at the top part of showAlert():

@IBAction func showAlert() {
 let message = "The value of the slider is: \(currentValue)"

 let alert = UIAlertController(title: "Hello, World",
 message: message, preferredStyle: .alert)

 let action = UIAlertAction(title: "OK", style: .default,
 handler: nil)
 . . .

Because the message, alert, and action objects are created inside the method, they
are locals. They only come into existence when the showAlert() action is performed
and cease to exist when the action is done.

As soon as the showAlert() method completes, i.e. when there are no more
statements for it to execute, the computer destroys the message, alert, and action
objects. Their storage space is no longer needed.

The currentValue variable, however, lives on forever… or at least for as long as the
ViewController does (which is until the user terminates the app). This type of
variable is named an instance variable, because its scope is the same as the scope
of the object instance it belongs to.

In other words, you use instance variables if you want to keep a certain value
around, from one action event to the next.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 58

The solution is to store a reference to the slider as a new instance variable, just like
you did for currentValue. Except that this time, the data type of the variable is not
Int, but UISlider. And you’re not using a regular instance variable but a special
form called an outlet.

➤ Add the following line to ViewController.swift:

@IBOutlet weak var slider: UISlider!

It doesn’t really matter where this line goes, just as long as it is somewhere inside
the brackets for class ViewController. I usually put outlets with the other instance
variables.

This line tells Interface Builder that you now have a variable named slider that can
be connected to a UISlider object. Just as Interface Builder likes to call methods
“actions”, it calls these variables outlets. Interface Builder doesn’t see any of your
other variables, only the ones marked with @IBOutlet.

Don’t worry about weak or the exclamation point for now. Why these are necessary
will be explained in the next tutorials. For now just remember that a variable for an
outlet needs to be declared as @IBOutlet weak var and has an exclamation point at
the end. (Sometimes you’ll see a question mark instead; all this hocus pocus will be
explained in due time.)

➤ Open the storyboard. Hold Ctrl and click on the slider. Don’t drag anywhere just
yet: let go of the mouse button and a menu pops up that shows all the connections
for this slider. (Instead of Ctrl-clicking you can also right-click once.)

This popup menu works exactly the same as the Connections inspector. I just
wanted to show you that it exists as an alternative.

➤ Click on the open circle next to New Referencing Outlet and drag to View
Controller:

Connecting the slider to the outlet

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 59

➤ In the popup that appears, select slider.

This is the outlet that you just added to the object. You have successfully connected
the slider object from the storyboard to the view controller’s slider outlet.

Now that you have done all this setup work, you can refer to the slider object from
anywhere inside the view controller using the slider variable.

With these changes in place, it no longer matters what you choose for the initial
value of the slider in Interface Builder. When the app starts, currentValue will
always correspond to that setting.

➤ Run the app and immediately press the button. It correctly says: “The value of
the slider is: 50”. Stop the app, go into Interface Builder and change the initial
value of the slider to something else, say, 25. Run the app again and press the
button. The alert should read 25 now.

Put the slider’s starting position back to 50 when you’re done playing.

Exercise: Give currentValue an initial value of 0 again. Its initial value is not longer
important – it will be overwritten in viewDidLoad() anyway – but Swift demands
that all variables always have some value and 0 is as good as any.

Comments
You’ve seen green lines that begin with // a few times now. These are comments.
You can write any text you want after the // symbol as the compiler will ignore
such lines completely.

// I am a comment! You can type anything here.

Anything between the /* and */ markers is considered a comment as well. The
difference between // and /* */ is that the former only works on a single line,
while the latter can span multiple lines.

/*
 I am a comment as well!
 I can span multiple lines.
 */

The /* */ comments are often used to temporarily disable whole sections of the
source code, usually when you’re trying to hunt down a pesky bug, a practice
known as “commenting out”.

The best use for comment lines is to explain how your code works. Well-written
source code is self-explanatory but sometimes additional clarification is useful.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 60

Explain to who? To yourself, mostly.

Unless you have the memory of an elephant, you’ll probably have forgotten exactly
how your code works when you look at it six months later. Use comments to jog
your memory.

As you have seen, Xcode automatically adds a comment block with copyright
information at the top of the source code files. Personally, I don’t care much for
these copyright blocks. Feel free to remove those lines if you don’t like them either.

Generating the random number
You still have quite a ways to go before the game is playable, so let’s get on with
the next item on the list: generating a random number and displaying it on the
screen.

Random numbers come up a lot when you’re making games because often games
need to have some element of unpredictability. You can’t really get a computer to
generate numbers that are truly random and unpredictable, but you can employ a
so-called pseudo-random generator to spit out numbers that at least appear that
way. You’ll use my favorite one, the arc4random_uniform() function.

A good place to generate this random number is when the game starts.

➤ Add the following line to viewDidLoad() in ViewController.swift:

targetValue = 1 + Int(arc4random_uniform(100))

The complete viewDidLoad() should now look like this:

override func viewDidLoad() {
 super.viewDidLoad()
 currentValue = lroundf(slider.value)
 targetValue = 1 + Int(arc4random_uniform(100))
}

What did you do here? First, you’re using a new variable, targetValue. You haven’t
actually defined this variable yet, so you’ll have to do that in a minute.

You are also calling the function arc4random_uniform() to deliver an arbitrary
integer (whole number) between 0 and 100.

Actually, the highest number you will get is 99 because arc4random_uniform() treats
the upper limit as exclusive. It only goes up-to 100, not up-to-and-including. To get
a number that is truly in the range 1 - 100, you need to add 1 to the result of
arc4random_uniform().

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 61

You still have to add the variable targetValue to the view controller, otherwise
Xcode will complain that it doesn’t know anything about this variable.

If you don’t tell the compiler what kind of variable targetValue is, then it doesn’t
know how much storage space to allocate for it, nor can it check if you’re using the
variable properly everywhere.

➤ Add the new variable at the top of ViewController.swift, with the other
variables:

var targetValue: Int = 0

Variables in Swift must always have a value, so here you give it the initial value 0.
That 0 is never used in the game; it will always be overwritten by the random value
in viewDidLoad().

Note: Up until you made this latest change, Xcode may have pointed out that
it did not know the targetValue variable. That error message should now have
disappeared.

Xcode tries to be helpful and it analyzes the program for mistakes as you’re
typing. Sometimes you may see temporary warnings and error messages that
will go away when you complete the changes that you’re making.

Don’t be too intimidated by these messages; they are only short-lived while
the code is in a state of flux.

I hope the reason is clear why you made targetValue an instance variable.

You want to calculate the random number in one place – in viewDidLoad() – and
then remember it until the user taps the button, in showAlert().

➤ Change showAlert() to the following:

@IBAction func showAlert() {
 let message = "The value of the slider is: \(currentValue)" +
 "\nThe target value is: \(targetValue)"

 let alert = . . .
}

Tip: Whenever you see . . . in a source code listing I mean that as shorthand for:
this part didn’t change. (Don’t go replacing what was there with an actual ellipsis!)

You’ve simply added the random number, which is now stored in targetValue, to the
message string. This should look familiar to you by now: the \(targetValue)
placeholder is replaced by the actual random number.

The \n character sequence is new. It means that you want to insert a special “new
line” character at that point, which will break up the text into two lines so the

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 62

message is a little easier to read.

➤ Run the app and try it out!

The alert shows the target value on a new line

Note: Earlier you’ve used the + operator to add two numbers together (just
like how it works in math) but here you’re also using + to glue different bits of
text into one big string.

Swift allows the use of the same operator symbol for different tasks,
depending on the data types involved. If you have two integers, + adds them
up. But with two strings, + concatenates them into a larger string.

Programming languages often use the same symbols for different purposes,
depending on the context. (There are only so many symbols to go around.)

Adding rounds to the game
If you press the Hit Me button a few times, you’ll notice that the random number
never changes. I’m afraid the game won’t be much fun that way.

This happens because you generate the random number in viewDidLoad() and
never again afterwards. The viewDidLoad() method is only called once when the
view controller is created during app startup.

The item on the to-do list actually said: “Generate a random number at the start of
each round”. Let’s talk about what a round means in terms of this game.

When the game starts, the player has a score of 0 and the round number is 1. You
set the slider halfway (to value 50) and calculate a random number. Then you wait
for the player to press the Hit Me button. As soon as she does, the round ends.

You calculate the points for this round and add them to the total score. Then you
increment the round number and start the next round. You reset the slider to the
halfway position again and calculate a new random number. Lather, rinse, repeat.

Whenever you find yourself thinking something along the lines of, “At this point in

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 63

the app we have to do such and so,” then it makes sense to create a new method
for it. This method will nicely capture that functionality in a unit of its own.

➤ With that in mind, add the following new method to ViewController.swift.

func startNewRound() {
 targetValue = 1 + Int(arc4random_uniform(100))
 currentValue = 50
 slider.value = Float(currentValue)
}

It doesn’t really matter where you put it, as long as it is inside the brackets of class
ViewController, so that the compiler knows it belongs to the ViewController object.

It’s not very different from what you did before, except that you moved the logic for
setting up a new round into its own method, startNewRound(). The advantage of
doing this is that you can use this logic from more than one place.

First you’ll call this new method from viewDidLoad() to set up everything for the
very first round. Recall that viewDidLoad() happens just once when the app starts
up, so this is a great place to begin the first round.

➤ Change viewDidLoad() to:

override func viewDidLoad() {
 super.viewDidLoad()
 startNewRound()
}

Note that you’ve removed the existing statements from viewDidLoad() and replaced
them with just the call to startNewRound().

You will also call startNewRound() after the player pressed the Hit Me button, from
within showAlert().

➤ Make the following change to showAlert():

@IBAction func showAlert() {
 . . .

 startNewRound()
}

The call to startNewRound() goes at the very end, right after present(alert, …).

Until now, the methods from the view controller have been invoked for you by UIKit
when something happened: viewDidLoad() is performed when the app loads,
showAlert() is performed when the player taps the button, sliderMoved() when the
player drags the slider, and so on. This is the event-driven model we talked about
earlier.

It is also possible to call methods by hand, which is what you’re doing here. You are

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 64

sending a message from one method in the object to another method in that same
object.

In this case, the view controller sends the startNewRound() message to itself in
order to set up the new round. The iPhone will then go to that method and execute
its statements one-by-one. When there are no more statements in the method, it
returns to the calling method and continues with that – either viewDidLoad() if this
is the first time or showAlert() for every round after.

Sometimes you may see method calls written like this:

self.startNewRound()

That does the exact same thing as just startNewRound() without “self.” in front.
Recall how I just said that the view controller sends the message to itself? Well,
that’s exactly what “self” means.

To call a method on an object you’d normally write:

receiver.methodName(parameters)

The receiver is the object you’re sending the message to. If you’re sending the
message to yourself, then the receiver is self. But because sending messages to
self is very common, you can also leave off this special keyword.

To be fair, this isn’t exactly the first time you’ve called methods. addAction() is a
method on UIAlertController and present() is a method that all view controllers
have, including yours.

When you write Swift programs, a lot of what you do is calling methods on objects,
because that is how the objects in your app communicate.

I hope you can see the advantage of putting the “new round” logic into its own
method. If you didn’t, the code for viewDidLoad() and showAlert() would look like
this:

override func viewDidLoad() {
 super.viewDidLoad()

 targetValue = 1 + Int(arc4random_uniform(100))
 currentValue = 50
 slider.value = Float(currentValue)
}

@IBAction func showAlert() {
 . . .

 targetValue = 1 + Int(arc4random_uniform(100))
 currentValue = 50
 slider.value = Float(currentValue)
}

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 65

Can you see what is going on here? The same functionality is duplicated in two
places. Sure, it is only three lines, but often the code you would have to duplicate
will be much larger.

And what if you decide to make a change to this logic (as you will shortly)? Then
you will have to make this change in two places as well.

You might be able to remember to do so if you recently wrote this code and it is still
fresh in memory, but if you have to make that change a few weeks down the road,
chances are that you’ll only update it in one place and forget about the other.

Code duplication is a big source of bugs, so if you need to do the same thing in two
different places consider making a new method for it.

The name of the method also helps to make it clear what it is supposed to be doing.
Can you tell at a glance what the following does?

targetValue = 1 + Int(arc4random_uniform(100))
currentValue = 50
slider.value = Float(currentValue)

You probably have to reason your way through it: “It is calculating a new random
number and then resets the position of the slider, so I guess it must be the start of
a new round.”

Some programmers will use a comment to document what is going on, but in my
opinion the following is much clearer:

startNewRound()

This line practically spells out for you what it will do. And if you want to know the
specifics of what goes on in a new round, you can always look up the
startNewRound() method and look inside.

Well-written source code speaks for itself. I hope I have convinced you of the value
of making new methods!

➤ Run the app and verify that it calculates a new random number between 1 and
100 after each tap on the button.

You should also have noticed that after each round the slider resets to the halfway
position. That happens because startNewRound() sets currentValue to 50 and then
tells the slider to go to that position. That is the opposite of what you did before
(you used to read the slider’s position and put it into currentValue), but I thought it
would work better in the game if you start from the same position in each round.

Exercise: Just for fun, modify the code so that the slider does not reset to the
halfway position at the start of a new round.

By the way, you may have been wondering what Float(…) and Int(…) do in these
lines:

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 66

targetValue = 1 + Int(arc4random_uniform(100))
slider.value = Float(currentValue)

Swift is a so-called strongly typed language, meaning that it is really picky about
the shapes that you can put into the boxes. For example, if a variable is an Int you
cannot put a Float into it, and vice versa.

The value of a UISlider happens to be a Float, which is a number that can have
digits after the decimal point – you’ve seen this when you printed out the value of
the slider – but currentValue is an Int. So this won’t work:

slider.value = currentValue

The compiler considers this an error. Some programming languages are happy to
convert the Int into a Float for you, but Swift wants you to be explicit about such
conversions.

When you say Float(currentValue), the compiler takes the integer number that’s
stored in currentValue’s box and puts it into a new Float value that it can give to
the UISlider.

Something similar happens with arc4random_uniform(), where the random number
gets converted to an Int first before it can be placed into targetValue.

Because Swift is stricter about this sort of thing than most other programming
languages, it is often a source of confusion for newcomers to the language.
Unfortunately, Swift’s error messages aren’t always very clear about what part of
the code is wrong or why.

Just remember, if you get an error message saying, “cannot assign value of type
'something' to type 'something else'” then you’re trying to mix incompatible data
types. The solution is to explicitly convert one type to the other, as you’ve been
doing here.

Putting the target value into the label
Great, you figured out how to calculate the random number and how to store it in
an instance variable, targetValue, so that you can access it later.

Now you are going to show that target number on the screen. Without it, the player
won’t know what to aim for and that would make the game impossible to win…

When you made the storyboard, you already added a label for the target value
(top-right corner). The trick is to put the value from the targetValue variable into
this label. To do that, you need to accomplish two things:

1. Create an outlet for the label so you can send it messages

2. Give the label new text to display

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 67

This will be very similar to what you did with the slider. Recall that you added an
@IBOutlet variable so you could reference the slider anywhere from within the view
controller. Using this outlet variable you could ask the slider for its value, through
slider.value. You’ll do the same thing for the label.

➤ In ViewController.swift, add the following line below the other outlet:

@IBOutlet weak var targetLabel: UILabel!

➤ In Main.storyboard, click to select the label (the one at the top that says
“100”).

➤ Go to the Connections inspector and drag from New Referencing Outlet to
View Controller.

Connecting the target value label to its outlet

➤ Select targetLabel from the popup, and the connection is made.

➤ Now on to the good stuff. Add the following method below startNewRound() in
ViewController.swift:

func updateLabels() {
 targetLabel.text = String(targetValue)
}

You’re putting this logic into its own method because it’s something you might use
from different places.

The name of the method makes it clear what it does: it updates the contents of the
labels. Currently it’s just setting the text of a single label, but later on you will add
code to update the other labels as well (total score, round number).

The code inside updateLabels() should have no surprises for you, although you may
wonder why you cannot simply do:

targetLabel.text = targetValue

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 68

The answer is that you cannot put a value of one data type into a variable of
another type. The square peg doesn’t fit into the round hole.

The targetLabel outlet references a UILabel object. The UILabel object has a text
property, which is a string object. You can only put string values into text but the
above line tries to put targetValue into it, which is an Int. That won’t fly because
an Int and a string are two very different kinds of things.

So you have to convert the Int into a string, and that is what String(targetValue)
does. It’s similar to what you’ve seen before with Float(…) and Int(…).

Just in case you were wondering, you can also write it as a string with a placeholder
like you’ve done before:

targetLabel.text = "\(targetValue)"

Which one you like better is a matter of taste. Either approach will work fine.

Notice that updateLabels() is a regular method – it is not attached to any UI
controls as an action – so it won’t do anything until you actually call it. (You can tell
because it doesn’t say @IBAction anywhere.)

The logical place to call updateLabels() would be after each call to startNewRound(),
because that is where you calculate the new target value.

Currently, you send the startNewRound() message from two places: viewDidLoad()
and showAlert(), so let’s update these methods.

➤ Change viewDidLoad() and showAlert() to:

override func viewDidLoad() {
 super.viewDidLoad()
 startNewRound()
 updateLabels() // add this line
}

@IBAction func showAlert() {
 . . .

 startNewRound()
 updateLabels() // add this line
}

You should be able to type just the first few letters of the method name, upd, and
Xcode will complete the rest. Press Enter to accept the suggestion:

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 69

Xcode autocomplete offers suggestions

➤ Run the app and you’ll actually see the random value on the screen. That should
make it a little easier to aim for.

The label in the top-right corner now shows the random value

You can find the project files for the app up to this point under 03 - Outlets in the
tutorial’s Source Code folder.

Action methods vs. normal methods
So what is the difference between an action method and a regular method?

Answer: Nothing.

An action method is really just the same as any other method. The only special
thing is the @IBAction specifier. This allows Interface Builder to see the method so
you can connect it to your buttons, sliders, and so on.

Other methods, such as viewDidLoad(), do not have the @IBAction specifier. This is
a good thing because all kinds of mayhem would occur if you hooked such methods
up to your buttons.

This is the simple form of an action method:

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 70

@IBAction func showAlert()

You can also ask for a reference to the object that triggered this action, using a
parameter:

@IBAction func sliderMoved(_ slider: UISlider)
@IBAction func buttonTapped(_ button: UIButton)

But the following method cannot be used as an action from Interface Builder:

func updateLabels()

It is not marked as @IBAction and as a result Interface Builder can’t see it. To use
updateLabels(), you will have to call it yourself.

If you’ve made it this far, then I’m guessing you like what you’re reading. :-)

This is only the first tutorial from my book The iOS Apprentice: Beginning iOS
Development with Swift. The full book has three more of these huge tutorials – and
in each you will develop a complete app from scratch.

The tutorials move from beginning to intermediate topics. Each new app is a little
more advanced than the one before. Together they cover most of what you need to
know to make your own apps.

By the end of the series you’ll have learned the essentials of Swift and the iOS
development kit. More importantly, you should have a pretty good idea of how all
the different parts fit together and how to solve problems like a pro developer.

I’m confident that after working through these tutorials you’ll be able to go out on
your own and turn your ideas into real apps!

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 71

You might not know everything yet, but you will be able to stand on your own two
feet as a developer – and you’ll be prepared for your journey into the exciting world
of iPhone and iPad development.

Some highlights of what The iOS Apprentice will teach you:

• How to program in Swift, even if you’ve never programmed before or if the
thought of learning a new language scares you.

• How to think like a programmer. You are more than a code monkey who just
punches source code into an editor. As a programmer you’ll have to think through
difficult computational problems and find creative solutions. Once you possess
this valuable skill, you can program anything!

• Experience with the SDK. The iOS SDK is huge and there is no way we can
cover everything – but we don’t need to. You just need to master the essential
building blocks, such as navigation controllers and table views. You’ll also learn
how to use web services from your apps and how to make iPad apps. Once you
understand these fundamentals, you can easily find out for yourself how the rest
of the SDK works.

• How to make apps look and feel great. There is more to making apps than
just programming. We’ll discuss user interface design as well as graphics and
animation techniques. You’ll already get a taste of that in this first tutorial when
you give the game a makeover and add support for different iPhone models.

• The latest and greatest. We will take full advantage of Swift and the latest iOS
features such as Auto Layout and Universal Storyboards. There is no point in
teaching you the old way of iOS development that was current when a lot of
other programming books were written, but is now hopelessly out-of-date. Every
new version of iOS adds improved development techniques and you’ll use these
to your benefit.

This is not just a bunch of dry theory but hands-on practical advice! I’ll explain how
everything works along the way while you’re making real apps, with lots of pictures
that clearly illustrate what is going on.

If this sounds like your idea of a fun time, then hop to raywenderlich.com/store/ios-
apprentice to get the full iOS Apprentice series.

Calculating the score
Now that you have both the target value (the random number) and a way to read
the slider’s position, you can calculate how many points the player scored.

The closer the slider is to the target, the more points for the player.

To calculate the score for this round, you look at how far off the slider’s value is

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 72

from the target:

Calculating the difference between the slider position and the target value

A simple approach to find the distance between the target and the slider is to
subtract currentValue from targetValue.

Unfortunately, that gives a negative value if the slider is to the right of the target
because now currentValue is greater than targetValue.

You need some way to turn that negative distance into a positive value – or you end
up subtracting points from the player’s score (unfair!).

Always doing the subtraction the other way around – currentValue minus
targetValue – won’t solve things because then the difference will be negative if the
slider is to the left of the target instead of the right.

Hmm, it looks like we’re in trouble here…

Exercise: How would you frame the solution to this problem if I asked you to solve
it in natural language? Don’t worry about how to express it in computer language
for now, just think of it in plain English.

I came up with something like this:

• If the slider’s value is greater than the target value, then the difference is: slider
value minus the target value.

• However, if the target value is greater than the slider value, then the difference
is: target value minus the slider value.

• Otherwise, both values must be equal, and the difference is zero.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 73

This will always lead to a difference that is a positive number, because you always
subtract the smaller number from the larger one.

Do the math:

If the slider is at position 60 and the target value is 40, then onscreen the slider is
to the right of the target value, and the difference is 60 - 40 = 20.

However, if the slider is at position 10 and the target is 30, then the slider is to the
left of the target and has a smaller value. The difference here is 30 - 10 = also 20.

Algorithms
What you’ve just done is come up with an algorithm, which is a fancy term for a
series of mechanical steps for solving a computational problem. This is only a very
simple algorithm, but it is one nonetheless.

There are many famous algorithms, such as quicksort for sorting a list of items and
binary search for quickly searching through such a sorted list. Other people have
already invented many algorithms that you can use in your own programs, so that
saves you a lot of thinking!

However, in all the programs that you write you’ll probably have to come up with a
few algorithms of your own. Some are simple such as the one above; others can be
pretty hard and might cause you to throw up your hands in despair. But that’s part
of the fun of programming.

The academic field of Computer Science concerns itself largely with studying
algorithms and finding better ones.

You can describe any algorithm in plain English. It’s just a series of steps that you
perform to calculate something. Often you can perform that calculation in your
head or on paper, the way you did above. But for more complicated algorithms
doing that might take you forever, so at some point you’ll have to convert the
algorithm to computer code.

The point I’m trying to make is this: if you ever get stuck and you don’t know how
to make your program calculate something, take a piece of paper and try to write
out the steps in English. Set aside the computer for a moment and think the steps
through. How you would perform this calculation by hand?

Once you know how to do that, writing the algorithm in computer code should be a
piece of cake.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 74

It is possible you came up with a different way to solve this little problem, and I’ll
show you two alternatives in a minute, but let’s convert this one to computer code
first:

var difference: Int
if currentValue > targetValue {
 difference = currentValue - targetValue
} else if targetValue > currentValue {
 difference = targetValue - currentValue
} else {
 difference = 0
}

The “if” construct is new. It allows your code to make decisions and it works much
like you would expect from English. Generally, it works like this:

if something is true {
 then do this
} else if something else is true {
 then do that instead
} else {
 do something when neither of the above are true
}

You put a so-called logical condition after the if keyword. If that condition turns out
to be true, for example currentValue is greater than targetValue, then the code in
the block between the { } brackets is executed.

However, if the condition is not true, then the computer looks at the else if
condition and evaluates that. There may be more than one else if, and it tries
them one by one from top to bottom until one proves to be true.

If none of the conditions are found to be valid, then the code in the else block is
executed.

In the implementation of this little algorithm you first create a local variable named
difference to hold the result. This will either be a positive whole number or zero, so
an Int will do:

var difference: Int

Then you compare the currentValue against the targetValue. First you determine if
currentValue is greater than targetValue:

if currentValue > targetValue {

The > is the greater-than operator. The condition currentValue > targetValue is

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 75

considered true if the value stored in the currentValue variable is at least one
higher than the value stored in the targetValue variable. In that case, the following
line of code is executed:

 difference = currentValue - targetValue

Here you subtract targetValue (the smaller one) from currentValue (the larger one)
and store the difference in the difference variable.

Notice how I chose variable names that clearly describe what kind of data the
variable contains. Often you will see code such as this:

a = b - c

It is not immediately clear what this is supposed to mean, other than that some
arithmetic is taking place. The variable names “a”, “b” and “c” don’t give any clues
as to their intended purpose.

Back to the if-statement. If currentValue is equal to or less than targetValue, the
condition is untrue (or false in computer-speak) and the program will skip the code
block until it reaches the next condition:

} else if targetValue > currentValue {

The same thing happens here as before, except that now the roles of targetValue
and currentValue are reversed. The computer will only execute the following line
when targetValue is the greater of the two values:

 difference = targetValue - currentValue

This time you subtract currentValue from targetValue (i.e. the other way around)
and store the result in the difference variable.

There is only one situation you haven’t handled yet, and that is when currentValue
and targetValue are equal. If this happens, the player has put the slider exactly on
top of the random number, a perfect score. In that case the difference is 0:

} else {
 difference = 0
}

At this point you’ve already determined that one value is not greater than the other,
nor is it smaller, leaving you only one conclusion to draw: the numbers must be
equal.

➤ Let’s put this algorithm into action. Add it to the top of showAlert():

@IBAction func showAlert() {
 var difference: Int
 if currentValue > targetValue {
 difference = currentValue - targetValue

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 76

 } else if targetValue > currentValue {
 difference = targetValue - currentValue
 } else {
 difference = 0
 }

 let message = "The value of the slider is: \(currentValue)"
 + "\nThe target value is: \(targetValue)"
 + "\nThe difference is: \(difference)"
 . . .
}

Just so you can see that it works, you have added the difference value to the alert
message as well.

➤ Run it and see for yourself.

The alert shows the difference between the target and the slider

Alternative ways to calculate the difference
I mentioned earlier that there are other ways to calculate the difference between
currentValue and targetValue as a positive number. The above algorithm works
well but it is eight lines of code. I think we can come up with a simpler approach
that takes up fewer lines.

The new algorithm goes like this:

1. Subtract the target value from the slider’s value.

2. If the result is a negative number, then multiply it by -1 to make it a positive
number.

Now you’re no longer avoiding the negative number, as computers can work just
fine with negative numbers, but you simply turn it into a positive number.

Exercise: Convert this algorithm into source code. Hint: the English description of
the algorithm contains the words “if” and “then”, which is a pretty good indication

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 77

you’ll have to use the if-statement.

You should have arrived at something like this:

var difference = currentValue - targetValue
if difference < 0 {
 difference = difference * -1
}

This is a pretty straightforward translation of the new algorithm.

You first subtract the two variables and put the result into the difference variable.

Notice that you can create the new variable and assign it the result of a calculation,
all in one line. You don’t need to put it onto two different lines, like so:

var difference: Int
difference = currentValue - targetValue

Also, in the one-liner version you didn’t have to tell the compiler that difference
takes Int values. Because both currentValue and targetValue are Ints, Swift is
smart enough to figure out that difference should also be an Int.

This feature is called type inference and it’s one of the big selling points of Swift.

Once you have the subtraction result, you use an if-statement to determine
whether difference is negative, i.e. less than zero. If it is, you multiply by -1 and
put the new result – now a positive number – back into the difference variable.

When you write,

difference = difference * -1

the computer first multiplies difference’s value by -1. Then it puts the result of that
calculation back into difference. In effect, this overwrites difference’s old contents
(the negative number) with the positive number.

Because this is a common thing to do, there is a handy shortcut:

difference *= -1

The *= operator combines * and = into a single operation. The end result is the
same: the variable’s old value is gone and it now contains the result of the
multiplication.

You could also have written this algorithm as follows:

var difference = currentValue - targetValue
if difference < 0 {
 difference = -difference
}

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 78

Instead of multiplying by -1, you now use the negation operator to ensure
difference’s value is always positive. This works because negating a negative
number makes it positive again. (Ask a math professor if you don’t believe me.)

➤ Give these new algorithms a try. You should replace the old stuff at the top of
showAlert() as follows:

@IBAction func showAlert() {
 var difference = currentValue - targetValue
 if difference < 0 {
 difference = difference * -1
 }

 let message = . . .
}

When you run this new version of the app (try it!), it should work exactly the same
as before. The result of the computation does not change, only the technique you
used.

The final alternative algorithm I want to show you uses a function.

You’ve already seen functions a few times before: you used arc4random_uniform()
when you made random numbers and lroundf() for rounding off the slider’s
decimals.

To make sure a number is always positive, you can use the abs() function.

If you took math in school you might remember the term “absolute value”, which is
the value of a number without regard to its sign.

That’s exactly what you need here and the standard library contains a convenient
function for it, which allows you to reduce this entire problem to a single line:

let difference = abs(targetValue - currentValue)

It really doesn’t matter whether you subtract currentValue from targetValue or the
other way around. If the number is negative, abs() turns it positive. It’s a handy
function to remember.

➤ Make the change to showAlert() and try it out:

@IBAction func showAlert() {
 let difference = abs(targetValue - currentValue)

 let message = . . .
}

It doesn’t get much simpler than that!

Exercise: Something else has changed… can you spot it?

Answer: You wrote let difference instead of var difference.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 79

Swift makes a distinction between variables and so-called constants. Unlike a
variable, the value of a constant cannot change (you probably guessed it from the
name).

You can only put something into the box of a constant once but not replace it with
something else afterwards.

The keyword var creates a variable while let creates a constant. That means
difference is now a constant, not a variable.

In the previous algorithms, the value of difference could possibly change. If it was
negative, you turned it positive. That required difference to be a variable, because
only variables can be assigned new values.

Now that you can calculate the whole thing in a single line, difference will never
have to change once you’ve given it a value. In that case, it’s better to make it a
constant with let. (Why is that better? It makes your intent clear, which in turn
helps the Swift compiler understand your program better.)

By the same token, message, alert, and action are also constants (and have been
all along!). Now you know why you declared these objects with let instead of var.
Once they’ve been given a value, they never need to change.

Constants are very common in Swift. Often you only need to hold onto a value for a
very short time. If in that time the value never has to change, it’s best to make it a
constant (let) and not a variable (var).

What’s the score?
Now that you know how far off the slider is from the target, calculating the player’s
score for this round is easy.

➤ Change showAlert() to:

@IBAction func showAlert() {
 let difference = abs(targetValue - currentValue)
 let points = 100 - difference

 let message = "You scored \(points) points"
 . . .
}

The maximum score you can get is 100 points if you put the slider right on the
target and the difference is zero. The further away from the target you are, the
fewer points you earn.

➤ Run the app and score some points!

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 80

The alert with the player’s score for the current round

Exercise: Because the maximum slider position is 100 and the minimum is 1, the
biggest difference is 100 - 1 = 99. That means the absolute worst score you can
have in a round is 1 point. Explain why this is so. (Eek! It requires math!)

Keeping track of the player’s total score
In this game, you want to show the player’s total score on the screen. After every
round, the app should add the newly scored points to the total and then update the
score label.

Because the game needs to keep the total score around for a long time,you will put
it in an instance variable.

➤ Add a new score instance variable to ViewController.swift:

class ViewController: UIViewController {

 var currentValue: Int = 0
 var targetValue: Int = 0
 var score = 0 // add this line

Hey, what’s that? Unlike for the other two instance variables, you did not state that
score is an Int.

If you don’t specify a data type, Swift uses type inference to figure out what type
you meant. Because 0 is a whole number, Swift assumes that score should be an
integer, and therefore automatically gives it the type Int. Handy!

In fact, you don’t need to specify Int for the other instance variables either:

 var currentValue = 0
 var targetValue = 0

➤ Make these changes.

Thanks to type inference, you only have to list the name of the data type when

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 81

you’re not giving the variable an initial value. But most of the time, you can safely
make Swift guess at the type.

I think type inference is pretty sweet! It will definitely save you some, uh, typing (in
more ways than one!).

Now showAlert() can be amended to update this score variable.

➤ Make the following changes:

@IBAction func showAlert() {
 let difference = abs(targetValue - currentValue)
 let points = 100 - difference

 score += points // add this line

 let message = "You scored \(points) points"
 . . .
}

Nothing too shocking here. You just added the following line:

score += points

This adds the points that the user scored in this round to the total score. You could
also have written it like this:

score = score + points

Personally, I prefer the shorthand += version but either one is okay. Both accomplish
exactly the same thing.

Showing the score on the screen
You’re going to do exactly the same thing that you did for the target label: hook up
the score label to an outlet and put the score value into the label’s text property.

Exercise: See if you can do the above without my help. You’ve already done these
things before for the target value label, so you should be able to repeat these steps
by yourself for the score label.

You should have done the following. You added this line to ViewController.swift:

@IBOutlet weak var scoreLabel: UILabel!

Then you went into the storyboard and connected the label (the one that says
999999) to the new scoreLabel outlet.

Unsure how to connect the outlet? There are several ways to make connections
from user interface objects to the view controller’s outlets:

• Ctrl-click on the object to get a context-sensitive popup menu. Then drag from

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 82

New Referencing Outlet to View Controller (you did this with the slider).

• Go to the Connections Inspector for the label. Drag from New Referencing Outlet
to View Controller (you did this with the target label).

• Ctrl-drag from View Controller to the label (give this one a try now). Make sure
you do it in this order; ctrl-dragging from the label to the view controller won’t
work.

There is more than one way to skin a cat, uh, connect outlets.

Great, that gives you a scoreLabel outlet that you can use to put text into the label.
Now where in the code shall you do that? In updateLabels(), of course.

➤ Back in ViewController.swift, change updateLabels() to the following:

func updateLabels() {
 targetLabel.text = String(targetValue)
 scoreLabel.text = String(score)
}

Nothing new here. You convert the score – which is an Int – into a String and then
give that string to the label’s text property. In response to that, the label will
redraw itself with the new score.

➤ Run the app and verify that the points for this round are added to the total score
label whenever you tap the button.

The score label keeps track of the player’s total score

One more round…
Speaking of rounds, you also have to increment the round number each time the
player starts a new round.

Exercise: Keep track of the current round number (starting at 1) and increment it
when a new round starts. Display the current round number in the corresponding
label. I may be throwing you into the deep end here, but if you’ve been able to

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 83

follow the instructions so far, then you’ve already seen all the pieces you will need
to pull this off. Good luck!

If you guessed that you had to add another instance variable, then you were right.
You should have added the following line to the source code:

var round = 0

It’s also OK if you included the name of the data type, even though that is not
strictly necessary:

var round: Int = 0

Also an outlet for the label:

@IBOutlet weak var roundLabel: UILabel!

As before, you should have connected the label to this outlet in Interface Builder.

Don’t forget to make those connections

Forgetting to make the connections in Interface Builder is an often-made
mistake, especially by yours truly.

It happens to me all the time that I make the outlet for a button and write the
code to deal with taps on that button, but when I run the app it doesn’t work.
Usually it takes me a few minutes and some head scratching to realize that I
forgot to connect the button to the outlet or the action method.

You can tap on the button all you want, but unless that connection exists your
code will not respond.

Finally, updateLabels() should now look like this:

func updateLabels() {
 targetLabel.text = String(targetValue)
 scoreLabel.text = String(score)
 roundLabel.text = String(round)
}

Did you also figure out where to increment the round variable?

I’d say the startNewRound() method is a pretty good place. After all, you call this
method whenever you start a new round. It makes sense to increment the round
counter there.

➤ Change startNewRound() to:

func startNewRound() {
 round += 1 // add this line

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 84

 targetValue = 1 + Int(arc4random_uniform(100))
 currentValue = 50
 slider.value = Float(currentValue)
}

Note that when you declared the round instance variable, you gave it a default
value of 0. Therefore, when the app starts up, round is initially 0. When you call
startNewRound() for the very first time, it adds 1 to this initial value and as a result
the first round is properly counted as round 1.

➤ Run the app and try it out. The round counter should update whenever you press
the Hit Me button.

The round label counts how many rounds have been played

You can find the project files for the app up to this point under 04 - Rounds and
Score in the tutorial’s Source Code folder. If you get stuck, compare your version of
the app with those source files to see if you missed anything.

Polishing the game
You could leave it at this and have a playable game. The gameplay rules are all
implemented and the logic doesn’t seem to have any big flaws. As far as I can tell,
there are no bugs. But there is still some room for improvement.

Obviously, the game is not very pretty yet and you will get to work on that soon. In
the mean time, there are a few smaller tweaks you can make.

Unless you already changed it, the title of the alert still says “Hello, World!” You
could give it the name of the game, “Bull’s Eye”, but I have a better idea. What if
you change the title depending on how well the player did?

If the player put the slider right on the target, the alert could say: “Perfect!” If the
slider is close to the target but not quite there, it could say, “You almost had it!” If
the player is way off, the alert could say: “Not even close...” And so on. This gives

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 85

players a little more feedback on how well they did.

Exercise: Think of a way to accomplish this. Where would you put this logic and
how would you program it? Hint: there are an awful lot of “if’s” in the preceding
sentences.

The right place for this logic is showAlert(), because that is where you create the
UIAlertController. You already do some calculations to make the message text and
now you will do something similar for the title text.

➤ Here is the changed method in its entirety:

@IBAction func showAlert() {
 let difference = abs(targetValue - currentValue)
 let points = 100 - difference
 score += points

 // add these lines
 let title: String
 if difference == 0 {
 title = "Perfect!"
 } else if difference < 5 {
 title = "You almost had it!"
 } else if difference < 10 {
 title = "Pretty good!"
 } else {
 title = "Not even close..."
 }

 let message = "You scored \(points) points"

 let alert = UIAlertController(title: title, // change this
 message: message,
 preferredStyle: .alert)

 let action = UIAlertAction(title: "OK", style: .default, handler: nil)
 alert.addAction(action)
 present(alert, animated: true, completion: nil)

 startNewRound()
 updateLabels()
}

You create a new local string named title, which will contain the text that goes at
the top of the alert. Initially, this title doesn’t have any value.

To decide which title text to use, you look at the difference between the slider
position and the target:

• If it equals 0, then the player was spot-on and you put the text “Perfect!” into
title.

• If the difference is less than 5, you use the text “You almost had it!”

• A difference less than 10 is “Pretty good!”

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 86

• However, if the difference is 10 or greater, then you consider the player’s attempt
“Not even close...”

Can you follow the logic here? It’s just a bunch of if-statements that consider the
different possibilities and choose a string in response.

When you create the UIAlertController object, you now give it this title string
instead of a fixed text.

Run the app and play the game for a bit. You’ll see that the title text changes
depending on how well you’re doing. That if-statement sure is handy!

The alert with the new title

Exercise: Give the player an additional 100 bonus points when she has a perfect
score. This will encourage players to really try to place the bull’s eye right on the
target. Otherwise, there isn’t much difference between 100 points for a perfect
score and 98 or 95 points if you’re close but not quite there.

Now there is an incentive for trying harder – a perfect score is no longer worth just
100 but 200 points. Maybe you can also give the player 50 bonus points for being
just one off.

➤ Here is how I would have made these changes:

@IBAction func showAlert() {
 let difference = abs(targetValue - currentValue)
 var points = 100 - difference // change let to var

 let title: String
 if difference == 0 {
 title = "Perfect!"
 points += 100 // add this line
 } else if difference < 5 {
 title = "You almost had it!"
 if difference == 1 { // add these lines
 points += 50
 }

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 87

 } else if difference < 10 {
 title = "Pretty good!"
 } else {
 title = "Not even close..."
 }

 score += points // move this line here
 . . .
}

You should notice a few things:

• In the first if you’ll see a new statement between the curly brackets. When the
difference is equal to zero, you now not only set the title to “Perfect!” but also
award an extra 100 points.

• The second if has changed too. There is now an if inside another if. Nothing
wrong with that! You want to handle the case where difference is 1 in order to
give the player bonus points. That happens inside the new if-statement.

After all, if the difference is more than 0 but less than 5, it could also be 1 (but
not necessarily all the time). Therefore, you perform an additional check to see if
the difference truly was 1, and if so, add 50 extra points.

• Because these new if-statements add extra points, points can no longer be a
constant; it now needs to be a variable. That’s why you changed it from let into
var.

• Finally, the line score += points has moved below the ifs. This is necessary
because the app might update the points variable inside those if-statements and
you want those additional points to count towards the score as well.

If you did it slightly differently, then that’s fine too, as long as it works! There is
often more than one way to program something, and if the results are the same
then each way is equally valid.

➤ Run the app to see if you can score some bonus points!

Raking in the points…

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 88

Local variables recap
I would like to point out one more time the difference between local variables and
instance variables. As you should know by now, a local variable only exists for the
duration of the method that it is defined in, while an instance variable exists as long
as the view controller (the object that owns it) exists. The same thing is true for
constants.

In showAlert(), there are six locals and you use three instance variables:

let difference = abs(targetValue - currentValue)
var points = 100 - difference
let title = . . .
score += points
let message = . . .
let alert = . . .
let action = . . .

Exercise: Point out which are the locals and which are the instance variables in the
showAlert() method. Of the locals, which are variables and which are constants?

Answer: Locals are easy to recognize, because the first time they are used inside a
method their name is preceded with let or var:

let difference = . . .
var points = . . .
let title = . . .
let message = . . .
let alert = . . .
let action = . . .

This syntax creates a new variable (var) or constant (let). Because these variables
and constants are created inside the method, they are locals.

Those six items – difference, points, title, message, alert, and action – are
restricted to the showAlert() method and do not exist outside of it. As soon as the
method is done, the locals cease to exist.

You may be wondering how difference, for example, can have a different value
every time the player taps the Hit Me button, even though it is a constant – after
all, aren’t constants given a value just once, never to change afterwards?

Here’s why: each time a method is invoked, its local variables and constants are
created anew. The old values have long been forgotten and you get all new ones.

When showAlert() is called, it creates a completely new instance of difference that
is unrelated to the previous one. That particular constant value is only used until

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 89

the end of showAlert() and then it is forgotten again.

The next time showAlert() is called after that, it creates yet another new instance
of difference (as well as new instances of the other locals points, title, message,
alert, and action). And so on… There’s some serious recycling going on here!

But inside a single invocation of showAlert(), difference can never change once it
has its value. The only local that can change is points, because it’s a var.

The instance variables, on the other hand, are defined outside of any method. It is
common to put them at the top of the file:

class ViewController: UIViewController {

 var currentValue = 0
 var targetValue = 0
 var score = 0
 var round = 0

As a result, you can use these variables from any method, without the need to
declare them again, and they will keep their values.

If you were to do this,

@IBAction func showAlert() {
 let difference = abs(targetValue - currentValue)
 var points = 100 - difference

 var score = score + points // doesn’t work!
 . . .
}

then things wouldn’t work as you’d expect them to. Because you now put var in
front of score, you have made it a new local variable that is only valid inside this
method.

In other words, this won’t add points to the instance variable score but to a new
local variable that also happens to be named score. The instance variable score
never gets changed, even though it has the same name.

Obviously that is not what you want to happen here. Fortunately, the above won’t
even compile. Swift knows there’s something fishy about that line.

Note: To make a distinction between the two types of variables, so that it’s
always clear at a glance how long they will live, some programmers prefix the
names of instance variables with an underscore.

They would name the variable _score instead of just score. Now there is less
confusion because names beginning with an underscore won’t be mistaken for
being locals. This is only a convention. Swift doesn’t care one way or the other
how you spell your instance variables.

Other programmers use different prefixes, such as “m” (for member) or

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 90

“f” (for field) for the same purpose. Some even put the underscore behind the
variable name. Madness!

Waiting for the alert to go away
There is something that bothers me about the game. You may have noticed it too…

As soon as you tap the Hit Me button and the alert pops up, the slider immediately
jumps back to its center position, the round number increments, and the target
label already gets the new random number.

What happens is that the new round already gets started while you’re still watching
the results of the last round. That’s a little confusing.

It would be better to wait with starting the new round until after the player has
dismissed the alert popup. Only then is the current round truly over.

Maybe you’re wondering why this isn’t already happening? After all, in showAlert()
you only call startNewRound() after you’ve shown the alert popup:

@IBAction func showAlert() {
 . . .

 let alert = UIAlertController(. . .)
 let action = UIAlertAction(. . .)
 alert.addAction(action)

 // Here you make the alert visible:
 present(alert, animated: true, completion: nil)

 // Here you start the new round:
 startNewRound()
 updateLabels()
}

Contrary to what you may expect, present(alert, …) doesn’t hold up execution of
the rest of the method until the alert popup is dismissed. That’s how alerts on other
platforms tend to work, but not on iOS.

Instead, present(alert, …) puts the alert on the screen and immediately returns.
The rest of the showAlert() method is executed right away, and the new round
already starts before the alert popup has even finished animating.

In programmer-speak, alerts work asynchronously. Much more about that in a later
tutorial, but what it means for you right now is that you don’t know in advance

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 91

when the alert will be done. But you can bet it will be well after showAlert() has
finished.

So if you can’t wait in showAlert() until the popup is dismissed, then how do you
wait for it to close?

The answer is simple: events! As you’ve seen, a lot of the programming for iOS
involves waiting for specific events to occur – buttons being tapped, sliders being
moved, and so on. This is no different. You have to wait for the “alert dismissed”
event somehow. In the mean time, you simply do nothing.

Here’s how it works:

For each button on the alert, you have to supply a UIAlertAction object. This object
tells the alert what the text on the button is – “OK” – and what the button looks like
(you’re using the default style here):

let action = UIAlertAction(title: "OK", style: .default, handler: nil)

The third parameter, handler, tells the alert what should happen when the button is
pressed. This is the “alert dismissed” event you’ve been looking for.

Currently handler is nil, which means nothing happens. To change this, you’ll need
to give the UIAlertAction some source code to perform when the button is tapped.
When the user finally taps OK, the alert will remove itself from the screen and jump
to your code. That’s your cue to take it from there.

This is also known as the callback pattern. There are several ways this pattern
manifests on iOS. Often you’ll be asked to create a new method to handle the
event. But here you’ll use something new: a closure.

➤ Change the bottom bit of showAlert() to:

@IBAction func showAlert() {
 . . .
 let alert = UIAlertController(. . .)

 let action = UIAlertAction(title: "OK", style: .default,
 handler: { action in
 self.startNewRound()
 self.updateLabels()
 })

 alert.addAction(action)
 present(alert, animated: true, completion: nil)
}

Two things have happened here:

1. You removed the calls to startNewRound() and updateLabels() from the bottom
of the method. (Don’t forget this part!)

2. You placed them inside a block of code that you gave to UIAlertAction’s handler

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 92

parameter.

Such a block of code is called a closure. You can think of it as a method without a
name. This code is not performed right away, only when the OK button is tapped.
This particular closure tells the app to start a new round and update the labels
when the alert is dismissed.

➤ Run it and see for yourself. I think the game feels a lot better this way.

Self

You may be wondering why in the handler block you did self.startNewRound()
instead of just writing startNewRound() like before.

The self keyword allows the view controller to refer to itself. That shouldn’t be
too strange a concept. When you say, “I want ice cream,” you use the word “I”
to refer to yourself. Similarly, objects can talk about (or to) themselves as
well.

Normally you don’t need to use self to send messages to the view controller,
even though it is allowed. The exception: inside closures you do have to use
self to refer to the view controller.

This is a rule in Swift. If you forget self in a closure, Xcode doesn’t want to
build your app (try it out). This rule exists because closures can “capture”
variables, which comes with surprising side effects. You’ll learn more about
that in the other tutorials.

Starting over
No, you’re not going to throw away the source code and start this project all over!
I’m talking about the game’s “Start Over” button. This button is supposed to reset
the score and put the player back into the first round.

One use of the Start Over button is for playing against another person. The first
player does ten rounds, then the score is reset and the second player does ten
rounds. The player with the highest score wins.

Exercise: Try to implement this Start Over button on your own. You’ve already
seen how you can make the view controller react to button presses, and you should
be able to figure out how to change the score and round variables.

How did you do? If you got stuck, then follow the instructions below.

First, add a method to ViewController.swift that starts a new game. I suggest
you put it near startNewRound() because the two are conceptually related.

➤ Add the new method:

func startNewGame() {
 score = 0

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 93

 round = 0
 startNewRound()
}

This method resets the score and round number, and starts a new round as well.

Notice that you set round to 0 here, not to 1. You use 0 because incrementing the
value of round is the first thing that startNewRound() does.

If you were to set round to 1, then startNewRound() would add another 1 to it and
the first round would actually be labeled round 2.

So you begin at 0, let startNewRound() add one and everything will work out fine.

(It’s probably easier to figure this out from the code than from my explanation. This
should illustrate why we don’t program computers in English.)

You also need an action method to handle taps on the Start Over button.

➤ Add the action method to ViewController.swift:

@IBAction func startOver() {
 startNewGame()
 updateLabels()
}

It doesn’t really matter where you place this method, but below the other action
methods is a nice place for it.

When the Start Over button is pressed, the startOver() action method first calls
startNewGame() to start a new game. (See, if you choose method names that make
sense, then reading source code really isn’t that hard.)

Because startNewGame() changes the contents of the instance variables you also call
updateLabels() to update the text of the score, round and target labels.

Just to make things consistent, in viewDidLoad() you should replace the call to
startNewRound() by startNewGame(). Because score and round are already 0 when
the app starts, it won’t really make any difference to how the app works but it does
make the intention of the source code clearer.

➤ Make this change:

override func viewDidLoad() {
 super.viewDidLoad()
 startNewGame() // this line changed
 updateLabels()
}

Finally, you need to connect the Start Over button to the action method.

➤ Open the storyboard and Ctrl-drag from the Start Over button to View
Controller. Let go of the mouse button and pick startOver from the popup.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 94

That connects the button’s Touch Up Inside event to the action you have just
defined.

➤ Run the app and play a few rounds. Press Start Over and the game puts you
back at square one.

Tip: If you’re losing track of what button or label is connected to what method, you
can click on View Controller in the storyboard to see all the connections that you
have made so far.

You can either right-click on View Controller to get a popup, or simply view the
connections in the Connections inspector. This shows all the connections that
have been made to the view controller.

All the connections from View Controller to the other objects

You can find the project files for the current version of the app under 05 - Polish in
the tutorial’s Source Code folder.

Adding the About screen
I hope you’re not fed up with this app yet, as there is one more feature that I wish
to add to it, an “about” screen that shows some information about the game:

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 95

The new About screen

This new screen contains a so-called text view with the gameplay rules and a
button that lets the player close the screen. You get to the About screen by tapping
the (i) button in the game.

Most apps have more than one screen, even very simple games, so this is as good
a time as any to learn how to add additional screens to your apps.

I have pointed it out a few times already: each screen in your app will have its own
view controller. If you think “screen”, think “view controller”.

Xcode automatically created the main ViewController object for you but the view
controller for the About screen you’ll have to make yourself.

➤ Go to Xcode’s File menu and choose New → File… In the window that pops up,
choose the Cocoa Touch Class template (if you don’t see it then make sure iOS is
selected at the top):

Choosing the file template for Cocoa Touch Class

Click Next. Xcode gives you some options to fill out:

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 96

The options for the new file

Choose the following:

• Class: AboutViewController

• Subclass of: UIViewController

• Also create XIB file: Leave this box unchecked.

• Language: Swift

Click Next. Xcode will ask you where to save this new view controller:

Saving the new file

➤ Choose the BullsEye folder (this folder should already be selected).

Also make sure Group says BullsEye and that there is a checkmark in front of
BullsEye in the list of Targets. (If you don’t see this panel, click the Options
button.)

➤ Click Create to finish.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 97

Xcode will make a new file and add it to your project. As you might have guessed,
the new file is AboutViewController.swift.

The new file in the Project navigator

To design this new view controller, you need to pay a visit to Interface Builder.

➤ Open Main.storyboard. There is no scene representing the About view
controller yet, so you’ll have to add this first.

➤ From the Object Library, choose View Controller and drag it into the canvas,
to the right of the main View Controller.

Dragging a new View Controller from the Object Library

This new view controller is totally blank. You may need to rearrange the storyboard
so that the two view controllers don’t overlap. Interface Builder isn’t always very
neat with where it puts things.

➤ Drag a new Button into the screen and give it the title Close. Put it somewhere
in the bottom center of the view (use the blue guidelines to help position it).

➤ Drag a Text View into the view and make it cover most of the space above the

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 98

button.

You can find these components in the Object Library. If you don’t feel like scrolling,
you can filter the components by typing in the field at the bottom:

Searching for text components

Note that there is also a Text Field, which is a single-line text component. You’re
looking for Text View, which can contain multiple lines of text.

After dragging both the text view and the button into the canvas, it should look
something like this:

The About screen in the storyboard

➤ Double-click on the text view to make its contents editable. By default, the Text
View contains a whole bunch of fake Latin placeholder text (also known as “Lorem
Ipsum”).

Copy-paste this new text into it:

*** Bull’s Eye ***

Welcome to the awesome game of Bull’s Eye where you can win points and
fame by dragging a slider.

Your goal is to place the slider as close as possible to the target

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 99

value. The closer you are, the more points you score. Enjoy!

You can also paste that text into the Attributes inspector for the text view if you
find that easier.

➤ Make sure to uncheck the Editable setting, otherwise the user can actually type
into the text view. For this game it should be set to read-only.

The Attributes inspector for the text view

That’s the design of the screen finished for now.

So how do you open this new About screen when the user presses the (i) button?
Storyboards have a neat trick for this: segues (pronounced “seg-way” like the silly
scooters). A segue is a transition from one screen to another and they are really
easy to add.

➤ Click the (i) button in the View Controller to select it. Then hold down Ctrl and
drag over to the About screen.

Ctrl-drag from one view controller to another to make a segue

➤ Let go of the mouse button and a popup appears with several options. Choose

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 100

Present Modally.

Choosing the type of segue to create

Now an arrow will appear between the two screens. This arrow represents the
segue.

➤ Click the arrow to select it. Segues also have attributes. In the Attributes
inspector, choose Transition, Flip Horizontal. That is the animation that UIKit
will use to move between these screens.

Changing the attributes for the segue

➤ Now you can run the app. Press the (i) button to see the new screen.

The About screen appears with a flip animation

The About screen should appear with a neat animation. Good, that seems to work.

However, there is an obvious shortcoming here: tapping the Close button seems to

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 101

have no effect. Once the user enters the About screen she can never leave… that
doesn’t sound like good user interface design to me.

The problem with segues is that they only go one way. To close this screen, you
have to hook up some code to the Close button. As a budding iOS developer you
already know how to do that: use an action method!

This time you will add the action method to AboutViewController instead of
ViewController, because the Close button is part of the About screen, not the main
game screen.

➤ Open AboutViewController.swift and replace its contents with the following:

import UIKit

class AboutViewController: UIViewController {

 @IBAction func close() {
 dismiss(animated: true, completion: nil)
 }
}

This code inside the close() action method tells UIKit to close the About screen
with an animation.

If you would have said dismiss(animated: false, …), then there would be no page
flip and the main screen would instantly reappear. From a user experience
perspective, it’s often better to show transitions from one screen to another with a
subtle animation.

That leaves you with one final step, hooking up the Close button’s Touch Up Inside
event to this new close action.

➤ Open the storyboard and Ctrl-drag from the Close button to the About scene’s
View Controller. Hmm, strange, the close action should be listed in this popup, but
it isn’t. Instead, this is the same popup you saw when you made the segue:

The “close” action is not listed in the popup

Exercise: Bonus points if you can spot the error. It’s a very common – and
frustrating! – mistake.

The problem is that this scene in the storyboard does not know yet that it is
supposed to represent the AboutViewController.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 102

You first added the AboutViewController.swift source file and then dragged a new
view controller into the storyboard, but you haven’t told the storyboard that the
design for this new view controller, in fact, belongs to AboutViewController. (That’s
why in the outline pane it just says View Controller and not About View Controller.)

➤ Fortunately, this is easily remedied. In Interface Builder, select the About scene’s
View Controller and go to the Identity inspector (that’s the button to the left of
the Attributes inspector).

➤ Under Custom Class, type AboutViewController.

The Identity inspector for the About screen

Xcode should auto-complete this for you once you’ve typed the first few characters.
If it doesn’t, then double-check that you really have selected the View Controller
and not one of the views inside it. (The view controller should also have a blue
border to indicate it is selected.)

Now you should be able to connect the Close button to the action method.

➤ Ctrl-drag from the Close button to About View Controller in the outline pane.
This should be old hat by now. The popup menu now does have an option for the
close action (under Sent Events). Connect the button to that action.

➤ Run the app again. You should now be able to return from the About screen.

Congrats! This completes the game. All the functionality is there and – as far as I
can tell – there are no bugs to spoil the fun.

But you have to admit the game still doesn’t look very good. If you were to put this
on the App Store in its current form, I’m not sure many people would be excited to
download it. Fortunately, iOS makes it easy for you to create good-looking apps, so
let’s give Bull’s Eye a makeover.

You can find the project files for the app up to this point under 06 - About Screen
in the tutorial’s Source Code folder.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 103

Making it look good
Apps in landscape mode do not display the iPhone status bar, unless you tell them
to. That’s great for our app. Games require a more immersive experience and the
status bar detracts from that.

On iOS 7 and before, the status bar did not automatically disappear in landscape,
and earlier editions of this tutorial included lengthy instructions on how to remove
the status bar from the app.

Even though that is not required anymore, there are still a few things you can do to
improve the way Bull’s Eye handles the status bar.

First, you will remove the status bar from the storyboard.

➤ Open Main.storyboard and select the View Controller. Go to the Attributes
inspector and under Simulated Metrics set Status Bar to None.

This removes the status bar from the storyboard (you should see the battery icon
disappear from the top-right corner of both scenes).

Remove the status bar from the view controller

This setting has no influence on what happens when the app runs. That’s why this
section is labeled Simulated Metrics. Interface Builder merely pretends there is a
status bar as a visual design aid, so you can see how your screen design looks with
the status bar on top.

Try enabling some of the other simulated options and then run the app; you’ll see
that it won’t make a difference.

The final step to get rid of the status bar forever is to make a change to the app’s
configuration.

➤ Go to the Project Settings screen and scroll down to Deployment Info. Under
Status Bar Style, check the option Hide status bar.

This will also hide the status bar during application launch.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 104

Hiding the status bar when the app launches

It’s a good idea to hide the status bar while the app is launching. It takes a few
seconds for the operating system to load the app into memory and start it up, and
during that time the status bar remains visible, unless you hide it using this option.

It’s only a small detail but the difference between a mediocre app and a great app
is that great apps do all the small details right.

➤ That’s it. Run the app and you’ll see that the status bar is history.

Info.plist
Most of the options from the Project Settings screen, such as the supported device
orientations and whether the status bar is visible during launch, get stored in your
app’s Info.plist file.

Info.plist is a configuration file inside the application bundle that tells iOS how the
app will behave. It also describes certain characteristics of the app that don’t really
fit anywhere else, such as its version number.

With previous versions of Xcode you often had to edit Info.plist by hand, but with
Xcode 8 this is hardly necessary anymore. You can make most of the changes
directly from the Project Settings screen.

However, it’s good to know that Info.plist exists and what it looks like.

➤ Go to the Project navigator and select the file named Info.plist to take a peek
at its contents.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 105

The Info.plist file is just a list of configuration options and their values. Most of
these may not make sense to you, but that’s OK – they don’t always make sense to
me either.

Notice the option Status bar is initially hidden. It has the value YES. This is the
option that you just changed.

Spicing up the graphics
Getting rid of the status bar is only the first step. We want to go from this:

Yawn…

to something that’s more like this:

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 106

Cool :-)

The actual controls don’t change. You’ll simply use images to smarten up their look,
and you will also adjust the colors and typefaces.

You can put an image in the background, on the buttons, and even on the slider, to
customize their appearance. Images should be in PNG format.

If you are artistically challenged, then don’t worry, I have provided a set of images
for you. But if you do have mad Photoshop skillz, then by all means go ahead and
design your own.

The Resources folder that comes with this tutorial contains a subfolder named
Images. You will first import these images into the Xcode project.

➤ In the Project navigator, find Assets.xcassets and click on it.

This is the so-called asset catalog for the app and it contains all the app’s images.
Right now, it is empty. Its only contents are placeholders for the app icon, which
you’ll add soon.

The asset catalog is initially empty

➤ At the bottom of the pane there is a + button. Click it and then select the option
Import…

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 107

Choose Import to put existing images into the asset catalog

Xcode shows a file picker. Select the Images folder from this tutorial’s resources
and press ⌘+A to select all the files inside this folder.

Choosing the images to import

Click Open and Xcode copies all the image files from that folder into the asset
catalog:

The images are now inside the asset catalog

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 108

If Xcode added a folder named “Images” instead of the individual image files, then
try again and this time make sure that you select the files inside the Images folder
rather than the folder itself before you click Open.

1x, 2x, and 3x displays
Currently each image set in the asset catalog has only one slot for a “2x” image,
but you can also specify 1x and 3x images. Having multiple versions of the same
image in varying sizes allows your apps to support the wide variety of iPhone and
iPad displays in existence.

1x is for low-resolution screens, the ones with the big, chunky pixels. There are no
low-resolution devices in existence that can actually run iOS 10 – they are too old
to bother with – so you’re not likely to come across many 1x images anymore. 1x is
only a concern if you’re working on an app that still needs to support iOS 9 or even
iOS 8.

2x is for high-resolution Retina screens. This covers most modern iPhones, iPod
touches, and iPads. Retina images are twice as big as the low-res images, hence
the 2x. The images you imported just now are 2x images.

3x is for the super high-resolution Retina HD screen of the iPhone 6s Plus and 7
Plus. If you want your app to have extra sharp images on these top-of-the-line
iPhone models, then you can drop them into the “3x” slot in the asset catalog.

There is a special naming convention for image files. If the filename ends in @2x or
@3x then that’s considered the Retina or Retina HD version. Low-resolution 1x
images have no special name (you don’t have to write @1x).

Putting up the wallpaper
Let’s begin by changing the drab white background into something more fancy.

➤ Open Main.storyboard. Go into the Object Library and locate an Image
View. (Tip: if you type “image” into the search box at the bottom of the Object
Library, it will quickly filter out all the other views.)

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 109

The Image View control in the Object Library

➤ Drag the image view on top of the existing user interface. It doesn’t really matter
where you put it, as long as it’s inside the Bull’s Eye View Controller.

Dragging the Image View into the view controller

➤ With the image view still selected, go to the Size inspector (that’s the one next
to the Attributes inspector) and set X and Y to 0, Width to 568 and Height to 320.

This will make the image view cover the entire screen.

The Size inspector settings for the Image View

➤ Go to the Attributes inspector for the image view. At the top there is an option
named Image. Click the downward arrow and choose Background from the list.

This will put the image from the asset catalog’s “Background” group into the image
view.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 110

Setting the background image on the Image View

There is only one problem: the image now obscures all the other controls. There is
an easy fix for that; you have to move the image view behind the other views.

➤ In the Editor menu in Xcode’s menu bar at the top of the screen, choose
Arrange → Send to Back.

Sometimes Xcode gives you a hard time with this (it still has a few bugs). If so, try
de-selecting the Image View and then selecting it again. Now the Send to Back
menu item should be available.

Alternatively, pick up the image view in the outline pane and drag it to the top, just
below View, to accomplish the same thing.

Your interface should now look something like this:

The game with the new background image

➤ Do the same thing for the About View Controller. Add an Image View and give
it the same “Background” image.

That takes care of the background. Run the app and marvel at the new graphics.

Changing the labels
Because the background image is quite dark, the black labels have become hard to
read. Fortunately, Interface Builder lets you change their color, and while you’re at
it you might change the font as well.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 111

➤ Still in the storyboard, select the label at the top, open the Attributes inspector
and click on the Color item.

Setting the text color on the label

This opens the Color Picker. It has several ways to select colors. I prefer the sliders
(second tab). If all you see is a gray scale slider, then select RGB Sliders from the
select box at the top.

➤ Pick a pure white color, Red: 255, Green: 255, Blue: 255, Opacity: 100%.

➤ Click on the Shadow item from the Attributes inspector. This lets you add a
subtle shadow to the label. By default this color is transparent (also known as
“Clear Color”) so you won’t see the shadow. Using the Color Picker, choose a pure
black color that is half transparent, Red: 0, Green: 0, Blue: 0, Opacity: 50%.

Note: Sometimes when you change the Color or Shadow attributes, the background
color of the view also changes. This is a bug in Xcode. Put it back to Clear Color
when that happens.

➤ Change the Shadow Offset to Horizontal: 0, Vertical: 1. This puts the shadow
below the label.

The shadow you’ve chosen is very subtle. If you’re not sure that it’s actually visible,
then toggle the vertical offset between 1 and 0 a few times. Look closely and you
should be able to see the difference. As I said, it’s very subtle.

➤ Click on the [T] icon of the Font attribute. This opens the Font Picker.

By default the System font is selected. That uses whatever is the standard font for
the user’s device, which on iOS 10 is San Francisco. It’s a nice font but we want
something more exciting for this game.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 112

Font picker with the System font

➤ Choose Font: Custom. That enables the Family field. Choose Family: Arial
Rounded MT Bold. Set the Size to 16.

Setting the label’s font

➤ The label also has an attribute Autoshrink. Make sure this is set to Fixed Font
Size.

If enabled, Autoshrink will dynamically change the size of the font if the text is
larger than will fit into the label. That is useful in certain apps, but not in this one.
Instead, you’ll change the size of the label to fit the text rather than the other way
around.

➤ With the label selected, press ⌘= on your keyboard, or choose Size to Fit
Content from the Editor menu.

(If the Size to Fit Content menu item is disabled, then de-select the label and select
it again. Sometimes Xcode gets confused about what is selected. Poor thing.)

The label will now become slightly larger or smaller so that it fits snugly around the
text. If the text got cut off when you changed the font, now it will completely show
again.

You don’t have to set these properties for the other labels one by one; that would
be a big chore. You can speed up the process by selecting multiple labels and then
applying these changes to that entire selection.

➤ Click on the Score: label to select it. Hold ⌘ and click on the Round: label. Now

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 113

both labels will be selected. Repeat what you did above for these labels:

• Set Color to pure white, 100% opaque.

• Set Shadow to pure black, 50% opaque.

• Set Shadow Offset to 0 horizontal, 1 vertical.

• Set Font to Arial Rounded MT Bold, size 16.

• Make sure Autoshrink is set to Fixed Font Size.

As you can see, in my storyboard the text no longer fits into the Score and Round
labels:

The font is too large to fit all the text in the Score and Round labels

You can either make the labels larger by dragging their handles to resize them
manually, or you can use the Size to Fit Content option (⌘=). I prefer the latter
because it’s less work.

Tip: Xcode is smart enough to remember the colors you have used recently. Instead
of going into the Color Picker all the time, you can simply choose a color from the
Recently Used Colors menu.

Click the tiny arrows and the menu will pop up:

Quick access to recently used colors and several handy presets

Exercise: You still have a few labels to go. Repeat what you just did for the other
labels. They should all become white, have the same shadow and have the same
font. However, the two labels on either side of the slider (1 and 100) will have font
size 14, while the other labels (the ones that will hold the target value, the score
and the round number) will have font size 20 so they stand out more.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 114

Because you’ve changed the sizes of some of the labels, your carefully constructed
layout may have been messed up a bit. You may want to clean it up a little.

At this point, my screen looks like this:

What the storyboard looks like after styling the labels

All right, it’s starting to look like something now. By the way, feel free to
experiment with the fonts and colors. If you want to make it look completely
different, then go right ahead. It’s your app!

The buttons
Changing the look of the buttons works very much the same way.

➤ Select the Hit Me button. In the Size inspector set its Width to 100 and its
Height to 37.

➤ Center the position of the button on the inner circle of the background image.

➤ Go to the Attributes inspector. Change Type from System to Custom.

A “system” button just has a label and no border. By making it a custom button,
you can style it any way you wish.

➤ Press the arrow on the Background field and choose Button-Normal from the
list.

➤ Set the Font to Arial Rounded MT Bold, size 20.

➤ Set the Text Color to red: 96, green: 30, blue: 0, opacity: 100%. This is a dark
brown color.

➤ Set the Shadow Color to pure white, 50% opacity. The shadow offset should be
Width 0, Height 1 (for some reason they don’t call it horizontal and vertical here).

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 115

Blending in

Setting the opacity to anything less than 100% will make the color slightly
transparent (with opacity of 0% being fully transparent). Partial transparency
makes the color blend in with the background and makes it appear softer.

Try setting the shadow color to 100% opaque pure white and notice the
difference.

This finishes the setup for the Hit Me button in its “default” state:

The attributes for the Hit Me button in the default state

Buttons can have more than one state. When you tap a button and hold it down, it
should appear “pressed down” to let you know that the button will be activated
when you lift your finger. This is known as the highlighted state and is an important
visual clue to the user.

➤ With the button still selected, click the State Config setting and pick
Highlighted from the menu. Now the attributes in this section reflect the
highlighted state of the button.

➤ In the Background field, select Button-Highlighted.

➤ Make sure the highlighted Text Color is the same color as before (red 96, green
30, blue 0, or simply pick it from the Recently Used Colors menu). Change the
Shadow Color to half-transparent white again.

➤ Check the Reverses On Highlight option. This will give the appearance of the
label being pressed down when the user taps the button.

You could change the other properties too, but don’t get too carried away. The
highlight effect should not be too jarring.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 116

The attributes for the highlighted Hit Me button

To test the highlighted look of the button in Interface Builder you can toggle the
Highlighted box in the Control section, but make sure to turn it off again or the
button will initially appear highlighted when the screen is shown.

That’s it for the Hit Me button. Styling the Start Over button is very similar, except
you will replace its title text by an icon.

➤ Select the Start Over button and change the following attributes:

• Set Type to Custom.

• Remove the text “Start Over” from the button.

• For Image choose StartOverIcon

• For Background choose SmallButton

• Set Width and Height to 32.

You won’t set a highlighted state on this button but let UIKit take care of this. If you
don’t specify a different image for the highlighted state, UIKit will automatically
darken the button to indicate that it is pressed.

➤ Make the same changes to the (i) button, but this time choose InfoButton for
the image.

The user interface is almost done. Only the slider is left to do…

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 117

Almost done!

The slider
Unfortunately, you can only customize the slider a little bit in Interface Builder. For
the more advanced customization that this game needs – putting your own images
on the thumb and the track – you have to resort to writing source code.

Everything you have done so far in Interface Builder you could also have done in
code. Setting the color on a button, for example, can be done by sending the
setTitleColor() message to the button.

However, I find that doing visual design work is much easier and quicker in a visual
editor such as Interface Builder than writing the equivalent source code. But for the
slider you have no choice.

➤ Go to ViewController.swift, and add the following to viewDidLoad():

let thumbImageNormal = UIImage(named: "SliderThumb-Normal")!
slider.setThumbImage(thumbImageNormal, for: .normal)

let thumbImageHighlighted = UIImage(named: "SliderThumb-Highlighted")!
slider.setThumbImage(thumbImageHighlighted, for: .highlighted)

let insets = UIEdgeInsets(top: 0, left: 14, bottom: 0, right: 14)

let trackLeftImage = UIImage(named: "SliderTrackLeft")!
let trackLeftResizable =
 trackLeftImage.resizableImage(withCapInsets: insets)
slider.setMinimumTrackImage(trackLeftResizable, for: .normal)

let trackRightImage = UIImage(named: "SliderTrackRight")!
let trackRightResizable =
 trackRightImage.resizableImage(withCapInsets: insets)
slider.setMaximumTrackImage(trackRightResizable, for: .normal)

This sets four images on the slider: two for the thumb and two for the track.

The thumb works like a button so it gets an image for the normal, un-pressed state
and one for the highlighted state.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 118

The slider uses different images for the track on the left of the thumb (green) and
the track to the right of the thumb (gray).

➤ Run the app. You have to admit it looks pretty good now!

The game with the customized slider graphics

To .png or not to .png

If you recall, the images that you imported into the asset catalog had
filenames like SliderThumb-Normal@2x.png and so on.

When you create a UIImage object, you don’t use the original filename but the
name that is listed in the asset catalog, SliderThumb-Normal.

That means you can leave off the @2x bit and the .png file extension.

Tip: Xcode 8 has a handy new feature that makes it really easy to add images into
your code. Instead of writing,

let thumbImageNormal = UIImage(named: "SliderThumb-Normal")

you can now type:

let thumbImageNormal = Sli

and then Xcode’s autocomplete will show a list of suggestions to complete the text
Sli, including any images whose names start with those letters.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 119

Xcode autocomplete also shows images

Pick SliderThumb-Normal from the list and your code will look like this:

The images are now part of your source code

Give it a try! I really like that it shows a tiny thumbnail of the image right in your
code.

Using a web view for HTML content
The About screen could still use some work.

Exercise: Change the Close button on the About screen to look like the Hit Me
button. You should be able to do this by yourself now. Piece of cake! Refer back to
the instructions for the Hit Me button if you get stuck.

➤ Now select the text view and press the Delete key on your keyboard. Yep,
you’re throwing it away.

➤ Put a Web View in its place (as always, you can find this view in the Object
Library).

A web view, as its name implies, can show web pages. All you have to do is give it
a URL to a web site. The web view object is named UIWebView.

For this app you will make it display a static HTML page from the application
bundle, so it won’t actually have to go onto the web and download anything.

➤ Go to the Project navigator and right-click on the BullsEye group (the yellow

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 120

folder). From the menu, choose Add Files to “BullsEye”…

Using the right-click menu to add existing files to the project

➤ In the file picker, select the BullsEye.html file from the Resources folder. This is
an HTML5 document that contains the gameplay instructions.

Choosing the file to add

Make sure that Copy items if needed is selected and that under Add to targets,
there is a checkmark in front of BullsEye. (If you don’t see these options, click the
Options button at the bottom.)

➤ Press Add to add the HTML file to the project.

➤ In AboutViewController.swift, add an outlet for the web view:

class AboutViewController: UIViewController {
 @IBOutlet weak var webView: UIWebView!
 . . .
}

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 121

➤ In the storyboard file, connect the UIWebView element to this new outlet. The
easiest way to do this is to Ctrl-drag from About View Controller (in the Outline
pane) to the Web View.

(If you do it the other way around, from the Web View to About View Controller,
then you’ll connect the wrong thing and the web view will stay empty when you run
the app.)

➤ In AboutViewController.swift, add the viewDidLoad() method:

override func viewDidLoad() {
 super.viewDidLoad()

 if let url = Bundle.main.url(forResource: "BullsEye",
 withExtension: "html") {
 if let htmlData = try? Data(contentsOf: url) {
 let baseURL = URL(fileURLWithPath: Bundle.main.bundlePath)
 webView.load(htmlData, mimeType: "text/html",
 textEncodingName: "UTF-8", baseURL: baseURL)
 }
 }
}

This loads the local HTML file into the web view.

The source code may look scary but what goes on is not really that complicated:
first it finds the BullsEye.html file in the application bundle, then loads it into a
Data object, and finally it asks the web view to show the contents of this data
object.

➤ Run the app and press the info button. The About screen should appear with a
description of the gameplay rules, this time in the form of an HTML document:

The About screen in all its glory

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 122

Supporting 3.5-inch screens
So far you have designed the app for the 4-inch screen of the iPhone 5, 5c, 5s, and
iPhone SE – still some of the most popular iPhone models in use today.

Previous versions of this tutorial showed how to make Bull’s Eye work on the iPhone
4S. This older model has a slightly smaller screen, measuring only 3.5 inches.

Both types of screen are equally wide (320 points), but where the 4-inch Retina
phones are 568 points tall, the 3.5-inch models have only 480 points. That’s a
difference of 88 points that your apps have to compensate for somehow.

However, this point is now moot… iOS 10 does not support those older 3.5-inch
devices anymore. Notice the absence of the iPhone 4S in the list of Simulators at
the top of the Xcode window – you can no longer run your app on the iPhone 4S,
not even a simulated one.

That said, it’s still useful to learn how to make the app work properly on these
smaller screens, for a few reasons:

1. When you run Bull’s Eye on the iPad, it uses the 3.5-inch dimensions. The iPad
can run all iPhone apps in a special emulation mode, but needs to use the 3.5-
inch form factor because of screen size limitations.

2. If you get a job as an iOS developer you may need to support older versions of
iOS. Older devices such as the iPhone 4S can still run iOS 9 or iOS 8.

3. It gives us a good excuse to learn about Auto Layout, a core UIKit technology
that makes it easy to support many different screen sizes in your apps,
including the larger screens of the iPhone 6 and 7, and iPad.

So even though iOS 10 doesn’t officially support the iPhone 4S’s smaller screen
anymore, let’s make it work with Bull’s Eye anyway.

➤ To see what the app looks like on a 3.5-inch screen, run the app on the iPad
simulator (I used iPad Air 2). You can switch between Simulators using the
selector at the top of the Xcode window:

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 123

Using the scheme selector to switch to the iPad Simulator

As you may have expected, a portion of the screen gets cut off:

On the iPad Simulator, the app doesn’t fill up the entire screen

Obviously, this won’t do. Quite a few people use their iPads to play iPhone games,
and the last thing you want is half your game’s screen to get cut off!

Tip: You can press ⌘1 to ⌘5 to scale the iPad Simulator if it doesn’t fit on your
screen, or use the Window → Scale menu item. That iPad is a monster!

Universal apps

Many apps are universal, meaning they support both the iPhone and the iPad.
When run on the iPad, universal apps properly take advantage of the iPad’s
larger screen.

Bull’s Eye is not a universal app. For those kinds of apps the iPad acts as if it
were an iPhone but shows everything twice as big. With the exception of the
12.9-inch iPad Pro, iPads only have enough pixels to emulate a 3.5-inch
phone.

It would be better to make Bull’s Eye a true universal app but that’s a bit too
involved for this tutorial. You’ll learn all about the iPad and universal apps in
tutorial 4, StoreSearch.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 124

Interface Builder has handy tools to help you make the game fit on the 3.5-inch
screen.

➤ Go to Main.storyboard. Open the View as: panel at the bottom and choose the
smallest device. (You may need to change the orientation back to landscape.)

Viewing the storyboard in 3.5-inch

The storyboard should look just like the app in the iPad Simulator, with the right
portion cut off. Now you can see how changes on the storyboard affect the smaller
iPhone 4S screen.

First, let’s fix the background image. The image is 568 points wide but at 3.5-inch
we only have room for 480 points, so the image appears off-center.

This is where Auto Layout comes to the rescue.

➤ In the storyboard, select the Background image view on the main View
Controller and click the small Align button at the bottom of the Xcode window:

The Align button

This menu lets you align a view with respect to the other views in the scene.

It looks best if you position the background image so that the rings in the wood are
always in the center of the screen. The way to do this with Auto Layout is to create

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 125

two alignment constraints, one horizontal and one vertical.

The way you use Auto Layout is by defining relationships between your different
views, the so-called constraints. When you run the app, UIKit evaluates these
constraints and calculates the final layout of the views. This probably sounds a bit
abstract, but you’ll see soon enough how it works in practice.

➤ In the Align menu, put checkmarks in front of Horizontally in Container and
Vertically in Container:

Using the Align menu to center the background image

➤ Change Update Frames to Items of New Constraints.

➤ Press Add 2 Constraints to finish. The rings are now properly centered. (Press
Undo and Redo a few times to see the difference.)

The new alignment constraints are drawn as blue bars crossing the scene:

The blue bars represent the alignment constraints

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 126

In the Outline pane there is also a new item called Constraints:

The new Auto Layout constraints appear in the Outline pane

There should be two constraints listed here, one for Background.centerX and one
for Background.centerY.

Note: Depending on exactly where you view these constraints in Xcode, they
may also be called “Align Center X” (for horizontal), and “Align Center Y” (for
vertical).

➤ Run the app again on the iPad Simulator and also on the 4-inch iPhone SE
Simulator. In both cases, the background should be perfectly centered

If you use the View as: panel to switch the storyboard back to the iPhone SE, the
background should be perfectly centered there too.

Let’s repeat this for the About screen.

➤ Use the Align menu to add the two alignment constraints to the About screen’s
background image view.

The background image should now be centered. Of course, the Close button and
web view are still completely off.

➤ In the storyboard, drag the Close button so that it snaps to the center of the
view as well as the bottom guide.

Interface Builder shows a handy guide, the dotted blue line, near the edges of the
screen, which is useful for aligning objects by hand. (You may need to move the
web view out of the way a bit to make it easier to snap the button.)

The dotted blue lines are guides that help position your UI elements

Like before, you want to create a centering constraint that keeps the Close button

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 127

in the middle of the screen, regardless of how wide the screen is.

➤ Click the Close button to select it. From the Align menu, choose Horizontally
in Container and click Add 1 Constraint.

Interface Builder now draws a red bar to represent the constraint, and a red box
around the button as well.

The Close button has red constraints

That’s a problem: the bars are all supposed to be blue, not red. Red indicates that
something is wrong with the constraints, usually that there aren’t enough of them.

For each view there must always be enough constraints to define both its position
and its size. The Close button already knows its size – you typed this into the Size
inspector earlier – but for its position there is only a constraint for the X-coordinate
(the alignment in the horizontal direction). You also need to add a constraint for the
Y-coordinate.

There are different types of constraints. So far you’ve used alignment constraints
but there are also “spacing” constraints that make sure the sides of two views stay
glued together with a certain amount of spacing between them. You make those
spacing constraints with the Pin menu.

➤ With the Close button still selected, click on the Pin button at the bottom of the
window:

The Pin button for adding spacing constraints

This menu lets you “pin” a view to its neighboring views. For the Close button, you
want it to always sit at a distance of 20 points from the bottom of the screen, so
that’s where you’ll pin it.

➤ In the Pin menu, in the Spacing to nearest neighbor section, there are four
bars that represent the four sides of the view that can be pinned. Because you want
to pin the bottom of the Close button, select that bar to make it fully red.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 128

The red bars decide the sides that become pinned down

➤ Make sure the spacing is 20 and then click Add 1 Constraint to finish.

Now the constraints all turn blue, meaning that everything is OK:

The constraints on the Close button are valid

If at this point you don’t see blue bars but orange ones, then something’s still
wrong with your Auto Layout constraints:

The views are not positioned according to the constraints

This happens when the constraints are valid (otherwise the bars would be red) but
the view is not in the right place in the scene. The dashed orange box off to the
side is where Auto Layout has calculated the view should be instead, based on the
constraints you have given it.

To fix this issue, select the Close button again and from the Resolve Auto Layout

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 129

Issues menu choose Update Frames:

Resolving Auto Layout issues

The Close button should now always be perfectly centered, regardless of whether
you’re on the 3.5-inch or the 4-inch Simulator.

Note: What happens if you don’t add any constraints to your views? In that
case, Xcode will automatically add constraints when it builds the app. That is
why you didn’t need to bother with any of this before.

However, these default constraints may not always do what you want. For
example, they will not automatically resize your views to accommodate the
smaller 3.5-inch screen. If you want that to happen, then it’s up to you to add
your own constraints. (Auto Layout can’t read your mind!)

As soon as you add just one constraint to a view, Xcode will no longer add any
other automatic constraints to that view. From then on you’re responsible for
adding enough other constraints so that UIKit always knows what the position
and size of the view will be.

There is one thing left to fix in the About screen and that is the web view.

➤ Select the Web View and open the Pin menu. First, make sure Constrain to
margins is unchecked. Then click all four bars so they become solid red and set
their spacing to 20 points, except the bottom one which is 8 points:

Creating the constraints for the web view

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 130

➤ For Update Frames choose Items of New Constraints. This will resize the
web view to the proper size, based on the constraints you chose.

Choosing the correct option for Update Frames

Without this setting, Xcode may display orange bars to complain that the size and
position of the web view do not correspond with the constraints you’re adding. You
can fix that afterwards with the Resolve Auto Layout Issues button, but why bother
when Xcode can fix it for you?

➤ Finish by clicking Add 4 Constraints.

There are now four constraints on the web view (the blue bars):

The four constraints on the web view

Three of these pin the web view to the main view, so that it always resizes along
with it, and one connects it to the Close button. This is enough to determine the
size and position of the web view in any scenario.

Back to the main game scene, which still needs some work to fit on the smaller
screen size.

First, you’ll clean up the storyboard by dragging all the controls over to the left so
that they fit tidily on the 3.5-inch screen. This is a bit tricky in 3.5-inch mode
because some of the buttons and labels are positioned outside the visible area,
making it impossible to pick them up and move them around.

Fortunately, Interface Builder has a handy preview pane that can help with this.

➤ Use the View as: panel to switch back to the 4-inch iPhone SE. Now all the
labels and buttons are visible again.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 131

➤ Make sure the main View Controller is selected.

➤ Click the button with the two overlapping circles in the Xcode toolbar to open the
Assistant editor.

➤ In the jump bar choose Preview and then Main.storyboard (Preview). (You
may need to click around a bit before this option becomes visible.)

Enabling the preview assistant in Interface Builder

The screen is now split in two. On the left is the storyboard; on the right is a
preview pane that shows how the app will look on different iPhone devices.

If not everything fits on your screen at once, you can make some room by hiding
the navigator and utilities panes with the buttons from the toolbar. You can also
collapse Interface Builder’s Outline pane. (Or buy an extra 30” monitor!)

The preview assistant should currently show a 3.5-inch iPhone 4S in landscape. If
not, then do the following:

➤ Select the preview so that it gets a blue border, and press Delete on your
keyboard to remove it.

➤ Use the small + button at the bottom to select iPhone 4s.This adds a preview of
the 3.5-inch phone, but in portrait.

➤ Hovering the mouse over the preview makes a rotation icon appear. Click the
rotation icon to flip the preview to landscape:

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 132

The rotation icon toggles between portrait and landscape

Now the preview pane should look just like the app in the iPad Simulator, with the
right portion of the game cut off.

➤ In the storyboard (the left pane), move the labels, buttons, and slider so that
everything looks good in the preview pane on the right. This is where the preview
pane comes in real handy!

Everything is rearranged to fit on the smaller 3.5-inch screen

Of course, the game looks a bit lopsided now on 4-inch phones. You will fix that by
placing all the labels, buttons and the slider into a new “container” view. Using Auto
Layout, you’ll center that container view in the screen, regardless of how big the
screen is.

➤ Select all the labels, buttons, and the slider. You can hold down ⌘ and click them
individually but an easier method is to go to the Outline pane, click on the first
view (for me that is the “Put the Bull’s Eye as close as you can to:” label), then hold
down Shift and click on the last view (in my case the Hit Me button):

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 133

Selecting the views from the Outline pane

You should have selected everything but the background image view.

➤ From Xcode’s menu bar, choose Editor → Embed In → View. This places the
selected views inside a new container view:

The views are embedded in a new container view

This new view is completely white, which is not what you want eventually, but it
does make it easier to add the constraints.

➤ Select the newly added container view and open the Pin menu. Put
checkboxes in front of Width and Height in order to make constraints for them.
Click Add 2 Constraints to finish.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 134

Pinning the width and height of the container view

Interface Builder now draws several bars around the view that represent the Width
and Height constraints that you just made, but they are red. Don’t panic! It only
means there are not enough constraints yet. No problem, you’ll add the missing
constraints next.

➤ With the container view still selected, open the Align menu. Check the
Horizontally in Container and Vertically in Container options. For Update
Frames, select Items of New Constraints. Click Add 2 Constraints.

All the Auto Layout bars should be blue now and the view is perfectly centered.

➤ Finally, change the Background color of the container view to Clear Color (in
other words, 100% transparent).

You now have a layout that works correctly on both the 3.5-inch and 4-inch
iPhones! Try it out:

The game running on 3.5-inch and 4-inch iPhones

Auto Layout may take a while to get used to. Adding constraints in order to position

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 135

UI elements is a little less obvious than just dragging them into place.

But this also buys you a lot of power and flexibility, which you need when you’re
dealing with devices that have different screen sizes.

You’ll learn more about Auto Layout in the other parts of The iOS Apprentice.

Supporting the iPhone 6 and up
Making the game work on smaller devices is one thing, but what about larger
devices, such as the iPhone 6, 7, and Plus? The regular iPhone 6, 6s, and 7 have a
4.7-inch screen, while the Plus is a whopping 5.5-inches.

➤ Try it out! You can use View as: or the preview pane to look at the storyboard in
4.7-inch and 5.5-inch mode, or you can run the app in the iPhone 6s, iPhone 7, or
Plus simulators.

What happened? This is what it looks like on the 7 Plus Simulator:

The game on the iPhone 6s Plus or 7 Plus

(Remember, you can press ⌘1 to ⌘5 to scale the Simulator if it doesn’t fit on your
screen. An iPhone Plus is almost as big as an iPad!)

Well, I guess it’s not too bad – but it’s not great either. The background image
doesn’t quite fit and the app is not taking advantage of all the available space. It
would be better if everything were slightly bigger.

There are several ways to tackle this, but we’re going to cheat and take the easy
way out.

Apps need to opt-in to support the larger screens of the iPhone 6 and up.

If an app does not opt-in, the iPhone 6/7/Plus will automatically scale up the app to
fill up the extra space. This is done so that older apps are still usable on these
larger devices. That’s great for us, because scaling up is exactly what we want –
and with minimal effort.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 136

Apps that do opt-in for iPhone 6 support must provide a so-called launch screen.
You’ve already seen this launch screen in action, probably without knowing it.

Note: Starting up an app usually takes a short while. You can make the
transition between tapping the app icon and actually using the app more
seamless by using a launch screen. This is a placeholder that is shown while
the app is being loaded.

Without this placeholder, the iPhone’s screen will simply be blanked out until
the app is ready, which isn’t very welcoming.

A lot of developers abuse this feature to show a splash screen with a logo, but
it’s better for the user if you just show a static image of the user interface and
not much else. Nobody likes to wait for apps to load and a well-chosen launch
screen will give the illusion the app is loading faster than it actually is.

You can use a regular image but you can also use a storyboard file or a XIB
file. A XIB, also known as “nib”, is like a storyboard except that it can contain
the design of only a single screen.

The design for the app’s launch screen lives in the file LaunchScreen.storyboard.
Currently that storyboard contains a completely empty view controller, resulting in a
blank launch screen. You’ve looked at it every time you launched the app, but
because it’s completely white there wasn’t much to see. (For fun, drag a label into
this storyboard and see what happens when you run the app.)

To get the automatic scaling on the iPhone 6 and up, you need to remove this
storyboard file. In other words, by removing the launch screen you’re opting out of
using the extra pixels from these larger devices. In order not to waste any screen
space, UIKit will automatically scale up the game so that it fills the screen.

➤ In the Project navigator, select LaunchScreen.storyboard and press the
delete key to remove it. When Xcode asks for confirmation, choose Move to
Trash.

That alone is not enough. You also need to tell Xcode that it can no longer use this
launch screen file.

➤ Go to the Project Settings screen. In the App Icons and Launch Images
section, make the box for Launch Screen File empty:

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 137

The Launch Screen File field must be empty

➤ To completely wipe Xcode’s memory of this launch screen file, hold down the
Alt/Option key and choose Product → Clean Build Folder from the Xcode menu
bar. Confirm by pressing Clean.

➤ Run the app. You should no longer see the launch screen. If you do, choose
Simulator → Reset Contents and Settings from the Simulator menu bar to start
over with a clean slate.

You might be in for a surprise. This is what the app looks like now on the iPhone 6s
and 7 Simulators:

The app is letterboxed on the iPhone 6s and 7

There are two black bars on the sides. What you’re seeing here is the app in 3.5-
inch mode, but scaled up to the iPhone 6s’s larger screen. Weird!

The solution is to add a 4-inch launch image to the project. This is not a XIB or
storyboard file, just a static picture of the wood texture background.

➤ In the Project navigator, right-click the BullsEye group (the one with the
yellow icon) and choose Add Files to “BullsEye” from the menu.

➤ Navigate to the Launch Images folder from this tutorial’s resources and select

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 138

the Default-568h@2x.png file. This image is identical to the background image
but turned sideways (launch images must always be in portrait orientation).

Make sure Copy items if needed is checked (click the Options button to reveal
this option) and press Add to add the file to the project. That’s all there is to it!

Run the app and notice that the transition into the app looks a lot smoother. It’s
little details like these that count. And best of all, the app now looks great on the
iPhone 6s, 7, and Plus!

Note: Simply scaling up the app for the larger phones works well for Bull’s
Eye, but for most apps you’ll want to take advantage of all that extra screen
space. iOS has several features that help with this – Auto Layout and Size
Classes – and you’ll learn all about them in the next tutorials.

Crossfade
I can’t conclude this tutorial before mentioning Core Animation. This technology
makes it very easy to create really sweet animations in your apps, with just a few
lines of code. Adding subtle animations (with emphasis on subtle!) can make your
app a delight to use.

You will add a simple crossfade after the Start Over button is pressed, so the
transition back to round one won’t seem so abrupt.

➤ In ViewController.swift, add the following line at the top, right below the other
import:

import QuartzCore

The Core Animation technology lives in its own framework, QuartzCore. With the
import statement you tell the compiler that you want to use the objects from this
framework.

➤ Change the startOver() method to:

@IBAction func startOver() {
 startNewGame()
 updateLabels()

 let transition = CATransition()
 transition.type = kCATransitionFade
 transition.duration = 1
 transition.timingFunction = CAMediaTimingFunction(name:
 kCAMediaTimingFunctionEaseOut)
 view.layer.add(transition, forKey: nil)
}

The calls to startNewGame() and updateLabels() were there before, but the
CATransition stuff is new.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 139

I’m not going to go into too much detail here. Suffice it to say you’re setting up an
animation that crossfades from what is currently on the screen to the changes
you’re making in startNewGame() – reset the slider to center position – and
updateLabels() – reset the values of the labels.

➤ Run the app and move the slider so that it is no longer in the center. Press the
Start Over button and you should see a subtle crossfade animation.

The screen crossfades between the old and new states

The icon
You’re almost done with the app but there are still a few loose ends to tie up. You
may have noticed that the app has a really boring white icon. That won’t do!

➤ Open the asset catalog (Assets.xcassets) and select AppIcon:

The AppIcon group in the asset catalog

This has eight slots for the different types of icons the app needs.

➤ In Finder, open the Icon folder from this tutorial’s resources. Drag the
Icon-40.png file into the first slot, iPhone Notification 20pt:

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 140

Dragging the icon into the asset catalog

You may be wondering why you’re dragging the Icon-40.png file and not
Icon-20.png into the slot for 20pt. Notice that this slot says 2x, which means it’s
for Retina devices and on Retina screens one point counts as two pixels.

➤ Drag the Icon-60.png file into the 3x slot next to it. This is for the iPhone 6s
Plus and 7 Plus with its 3x resolution.

➤ For iPhone Spotlight & Settings 29pt, drag the Icon-58.png file into the 2x
slot and Icon-87.png into the 3x slot. (What, you don’t know your times table for
29?)

➤ For iPhone Spotlight 40pt, drag the Icon-80.png file into the 2x slot and
Icon-120.png into the 3x slot.

➤ For iPhone App 60pt, drag the Icon-120.png file into the 2x slot and
Icon-180.png into the 3x slot.

That’s four icons in two different sizes. Phew!

The other files in the folder are for the iPad. This app does not have an iPad
version, but that doesn’t prevent iPads from running it. All iPads can run all iPhone
apps, but they show up in a smaller frame. To accommodate this, it’s nicest if you
also supply icons for iPad.

➤ With AppIcon still selected, in the Attributes inspector choose iOS 7.0 and
Later for iPad. This adds nine new slots to the AppIcon set.

➤ Drag the icons into the proper slots. Notice that the iPad icons need to be
supplied in 1x as well as 2x sizes (but not 3x). You may need to do some mental
arithmetic here to figure out which icon goes into which slot!

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 141

The full set of icons for this app, including the iPad icons

The Icon-1024.png file is not used by the app. This is for submission to the App
Store. As part of the app submission, you are required to upload a 1024×1024 pixel
version of the icon.

➤ Run the app and close it. You’ll see that the icon has changed on the Simulator’s
springboard. If not, remove the app from the Simulator and try again (sometimes
the Simulator keeps using the old icon and re-installing the app will fix this).

The icon on the Simulator’s springboard

Display name
One last thing. You named the project BullsEye and that is the name that shows
up under the icon. However, I’d prefer to spell it “Bull’s Eye”.

There is only limited space under the icon and for apps with longer names you have
to get creative to make the name fit. For this game, however, there is enough room
to add the space and the apostrophe.

➤ Go to the Project Settings screen. The very first option is Display Name.
Change this to Bull's Eye.

Changing the display name of the app

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 142

Like many of the project’s settings you can also find the display name in the app’s
Info.plist file. Let’s have a look.

➤ From the Project navigator, select Info.plist.

The display name of the app in Info.plist

The row Bundle display name contains the new name you’ve just given the app.

Note: If Bundle display name is not present, the app will use the value from
the field Bundle name. That has the special value “$(PRODUCT_NAME)”,
meaning Xcode will automatically put the project name, BullsEye, in this field
when it adds the Info.plist to the application bundle. By providing a Bundle
display name you can override this default name and give the app any name
you want.

➤ Run the app and quit it to see the new name under the icon.

The bundle display name setting changes the name under the icon

Awesome, that completes your very first app!

You can find the project files for the finished app under 07 - Final App in the
tutorial’s Source Code folder.

There is also a version named 08 - Final App with Comments that has a lot of
comments to show you what every piece of code does. I also removed anything
that was inserted by the Xcode template that isn’t actually needed for this game, so
that the code is as simple as possible.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 143

Running the game on your device
So far, you’ve run the app on the Simulator. That’s nice and all but probably not
why you’re learning iOS development. You want to make apps that run on real
iPhones and iPads! There’s hardly a thing more exciting than running an app that
you made on your own phone. And, of course, to show the fruits of your labor to
other people!

Don’t get me wrong: developing your apps on the Simulator works very well. When
developing, I spend most of my time with the Simulator and only test the app on
my iPhone every so often.

The Simulator is great, but you do need to run your creations on a real device in
order to test them properly. Some things the Simulator simply cannot do. If your
app needs the iPhone’s accelerometer, for example, you have no choice but to test
that functionality on an actual device. Don’t sit there and shake your Mac!

Until recently you needed a paid Developer Program account to run apps on your
iPhone. Since Xcode 7, however, you can do it for free. All you need is an Apple ID.
And Xcode 8 makes it easier than ever before.

➤ Connect your iPhone, iPod touch, or iPad to your Mac using the USB cable.

➤ From the Xcode menu bar select Window → Devices to open the Devices
window.

Mine looks like this (I’m using an iPhone 6s):

The Xcode Devices window

On the left is a list of devices that can be used for development.

➤ Click your device name to select it.

If this is the first time you’re using the device with Xcode, the Devices window will
say something like, “iPhone is not paired with your computer.” To pair the device

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 144

with Xcode, you need to unlock the device first (hold the home button). After
unlocking, an alert will pop up on the device asking you to trust the computer
you’re trying to pair with. Tap on Trust to continue.

Xcode will now refresh the page and let you use the device for development. Give it
a few minutes (see the progress bar in the main Xcode window). If it takes too
long, you may need to unplug the device and plug it back in first.

At this point it’s possible to get the error message, “An error was encountered while
enabling development on this device.” You’ll need to unplug the device and reboot
it. Make sure to restart Xcode before you reconnect the device.

Cool, that is the device sorted.

The next step is setting up your Apple ID with Xcode. It’s OK to use the same Apple
ID that you’re already using with iTunes and your iPhone, but if you run a business
you might want to create a new Apple ID to keep these things separate. Of course,
if you’ve already registered for a paid Developer Program account, you should use
that Apple ID.

➤ Open the Accounts pane in the Xcode Preferences window:

The Accounts preferences

➤ Click the + button at the bottom and choose Add Apple ID.

Xcode will ask for your Apple ID:

Adding your Apple ID to Xcode

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 145

➤ Type your Apple ID username and password and click Sign In.

Xcode verifies your account details and adds them to the accounts window.

Note: It’s possible that Xcode is unable to use the Apple ID your provided, for
example if it has been used with a Developer Program account in the past that
is now expired. The simplest solution is to make a new Apple ID. It’s free and
only takes a few minutes. https://appleid.apple.com

You still need to tell Xcode to use this account when building your app.

➤ Go to the Project Settings screen. In the General tab go to the Signing
section.

The Signing options in the Project Settings screen

In order to allow Xcode to put an app on your iPhone, the app must be digitally
signed with your Development Certificate. A certificate is an electronic document
that identifies you as an iOS application developer and is valid only for a limited
amount of time.

Apps that you want to submit to the App Store must be signed with another
certificate, the Distribution Certificate. To use the distribution certificate you
must be a member of the paid Developer Program but using the development
certificate is free.

In addition to a valid certificate, you also need a so-called Provisioning Profile for
each app you make. Xcode uses this profile to sign the app for use on your device.
The specifics don’t really matter, just know that you need a provisioning profile or
the app won’t go on your device.

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 146

Making the certificates and provisioning profiles used to be frustrating and error-
prone. Fortunately, those days are over: Xcode 8 makes it really easy. When the
Automatically manage signing option is enabled, Xcode will take care of all this
business with certificates and provisioning profiles and you don’t have to worry
about a thing.

➤ Click on Team to select your Apple ID.

Xcode will now automatically register your device with your account, create a new
Development Certificate, and downloads and installs the Provisioning Profile on your
device. These are all steps you would have had to do by hand in the past but now
Xcode 8 takes care of all that.

It’s possible you get the following error:

The bundle identifier is already in use

The app’s Bundle Identifier – or App ID as it’s called here – must be unique. If
another app is already using that identifier, then you cannot use it anymore. That’s
why you’re supposed to start the Bundle ID with your own domain name. The fix is
easy: change the Bundle Identifier field to something else and try again.

It’s also possible you get this error:

No devices registered

Xcode must know about the device that you’re going to run the app on. That’s why
I asked you to connect your device first. Double-check that your iPhone or iPad is
still connected to your Mac and that it is listed in the Devices window.

If all of that checks out, go back to Xcode’s main window and click on the box in the
toolbar to change where you will run the app. The name of your device should be in
that list somewhere.

On my system it looks like this:

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 147

Changing where the app will be run

You’re all set up and ready to go!

➤ Press Run to launch the app.

At this point you may get a popup with the question “codesign wants to sign using
key … in your keychain”. If so, answer with Always Allow. This is Xcode trying to
use the new Development Certificate you just created but you need to give it
permission first.

Does the app work? Awesome! If not, read on...

There are a few things that can go wrong when you try to put the app on your
device, especially if you’ve never done this before, so don’t panic if you run into
problems.

The device is not connected. Make sure your iPhone, iPod touch, or iPad is
connected to your Mac. The device must be listed in Xcode’s Devices window and
there should not be a yellow warning icon.

The device does not trust you. You might get this warning:

Quick, call security!

On the device itself there will be a popup with the text, “Untrusted Developer. Your
device management settings do not allow using apps from developer …”.

If this happens, open the Settings app on the device and go to General, Profile.
Your Apple ID should be listed in that screen. Tap it, followed by the Trust button.
Then try running the app again.

The device is locked. If your phone locks itself with a passcode after a few
minutes, you might get this warning:

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 148

The app won’t run if the device is locked

Simply unlock your device (hold the home button or type in the 4-digit passcode)
and press Run again.

If you’re curious about these certificates and provisioning profiles, then open the
Preferences window and go to the Accounts tab. Select your account and click
the View Details… button in the bottom-right corner.

This brings up another panel, listing your signing identities (the certificates) and the
provisioning profiles:

The account details panel

The “iOS Team Provisioning Profile: *” is the thing that allows you to run the app on
your device. (By the way, they call it the “team” profile because often there is more
than one developer working on an app and they can all share the profile.)

When you’re done, close the Accounts window and go to the Devices window.

You can see the provisioning profiles that are installed on your device by right-
clicking the device name and choosing Show Provisioning Profiles:

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 149

The provisioning profiles on your device

You can have more than one certificate and provisioning profile installed. This is
useful if you’re on multiple development teams or if you prefer to manage the
provisioning profiles for different apps by hand.

To see how Xcode chooses which profile and certificate to sign your app with, go to
the Project Settings screen and switch to the Build Settings tab. There are a lot of
settings in this list, so filter them by typing signing in the search box. (Also make
sure All is selected, not Basic.)

The screen will look something like this:

The Code Signing settings

Under Code Signing Identity it says iOS Developer. This is the certificate that
Xcode uses to sign the app. If you click on that line, you can choose another
certificate. Under Provisioning Profile you can change the active profile. Most of
the time you won’t need to change these settings, but at least you know where to
find them now.

The end… or the beginning?
This has been a very long lesson – if you’re new to programming, you’ve had to get
a lot of new concepts into your head. I hope your brain didn’t explode!

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 150

At least you should have gotten some insight into what it takes to develop an app.

I don’t expect you to understand exactly everything that you did, especially not the
parts that involved writing Swift code. It is perfectly fine if you don’t, as long as
you’re enjoying yourself and you sort of get the basic concepts of objects, methods
and variables.

If you were able to follow along and do the exercises, you’re in good shape!

I encourage you to play around with the code for a bit more. The best way to learn
programming is to do it, and that includes making mistakes and messing things up.
I hereby grant you full permission to do so! Maybe you can add some cool new
features to the game (if you do, let me know).

But for now, pour yourself a drink and put your feet up. You’ve earned it.

In the Source Code folder for this tutorial you can find the complete source code for
the Bull’s Eye app, with plenty of added commentary. If you’re still unclear about
some of what you did, it might be a good idea to look at this cleaned up, fully
commented source code.

If you’re interested in how I made the graphics, then take a peek at the Photoshop
files in the Resources folder. The wood background texture was made by Atle Mo
from subtlepatterns.com.

But there’s more!
Thank you for reading the first tutorial from my book, The iOS Apprentice!

I hope this first tutorial gave you some taste of what is to come in the rest of the
book, which is available from www.raywenderlich.com.

The full book has three more epic-length tutorials, each of which explains an app of
increasing complexity.

You’ve seen what it took to build a fairly simple game. In the next tutorials I want
to show you how to use features such as table views, navigation controllers, maps
and GPS, the photo camera, web services, and much more… All the fundamentals
that you need to know to make your own apps.

If you liked working through this free tutorial and you want to learn more about
iPhone and iPad programming, then give the next lessons a try. Each new tutorial
builds on what you’ve learned before and by the end of the series you should be
able to write your own apps from scratch – with a pretty good idea of what you’re
doing.

What you’ll learn in the rest of the book:

Tutorial 2: Checklists
Now that you’ve gotten a taste of how everything works, you’re going to create a

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 151

basic to-do list app.

You’ll learn about table views, navigation controllers, delegates, and saving your
data. You will also discover the fundamental design patterns that all iOS apps use,
and little by little the Swift language should start to make sense to you.

Bonus feature: setting reminders using local notifications.

Tutorial 3: MyLocations
Building on what you’ve learned in the previous two chapters, this tutorial goes into
more depth with both Swift and the iOS frameworks.

You’ll be making an app that uses the Core Location framework to obtain GPS
coordinates for the user’s whereabouts, Map Kit to show the user’s favorite
locations on a map, the iPhone’s camera and photo library to attach photos to these
locations, and Core Data to store everything in a database.

That’s a lot of stuff! After this lesson, Swift and you will get along just fine and I’d
be surprised if you won’t be able to write a few apps of your own already.

Tutorial 4: StoreSearch
Mobile apps often need to talk to web services and that’s what you’ll do in this final
tutorial of the series. You’ll make a stylish app that lets you search for products on
the iTunes store using HTTP requests and JSON.

You will learn about view controller containment – or how to embed one view
controller inside another – and how to show a completely different UI in landscape.
We’ll talk about animation, scroll views, downloading images, supporting multiple
languages, and porting the app to the iPad.

Finally, I’ll explain how to use Ad Hoc distribution for beta testing and how to
submit your apps to the App Store. There is hardly a stone left unturned at the end
of this monster tutorial!

You can get the full version of The iOS Apprentice: Beginning iOS Development with
Swift, Fifth Edition at www.raywenderlich.com/store/ios-apprentice.

It’s worth it if you want to become a great iOS developer!

Get in touch
Feel free to send Matthijs an email if you have any questions or comments about
these tutorials (mail@hollance.com). And of course you’re welcome to visit the
forums for some good conversation at forums.raywenderlich.com.

Thanks for reading!

iOS Apprentice Tutorial 1: Getting Started

raywenderlich.com 152

	Tutorial 1: Getting Started
	The language of the computer
	The Bull’s Eye game
	The one-button app
	How does an app work?
	Working our way down the to-do list
	Objects, data and methods
	Adding the rest of the controls
	Enough playing around let’s make a game!
	Calculating the score
	Polishing the game
	Adding the About screen
	Making it look good
	Running the game on your device
	The end or the beginning?

